Dopaminergic regulation of spatial learning
空间学习的多巴胺能调节
基本信息
- 批准号:10561863
- 负责人:
- 金额:$ 42.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-22 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AnatomyAnimal ModelBackBehaviorBrainCalciumCellsCognitionComplexComputer ModelsCuesDefectDopamineDopaminergic CellDrosophila genusElectrophysiology (science)Environmental WindFeedbackGeneticHeadImageLearningLightLinkMapsMemoryMonitorMovementNerve DegenerationNeurodegenerative DisordersNeuronsOrganismPositioning AttributeRegulationRewardsRoleRotationSensorySignal TransductionSpeedSynapsesSynaptic plasticitySystemTestingTimeVisualWeightWhole-Cell Recordingsbasecell typeclinically relevantcognitive processconnectomedesigndiscountdopaminergic neuronexperimental studyflyin silicoin vivoin vivo calcium imagingneural networkneuromechanismresponsetheoriesvirtual reality environmentway finding
项目摘要
Summary
In neural networks that store information in their connection weights, there is a tradeoff between sensitivity
and stability. Connections must be plastic to incorporate new information, but if they are too plastic, stored
information can be corrupted. Therefore, it would be useful if learning rates in the brain were regulated by a
“when-to-learn” signal that varies with the current availability of new information. In reward learning,
dopamine is known to serve this function, by rapidly upregulate synaptic plasticity in response to reward
prediction errors. The overarching hypothesis of this proposal is that dopamine also provides a when-to-learn
signal for spatial learning. During spatial learning, new information is generally available when an organism is
moving through space. Thus, we hypothesize that spatial learning is modulated by dopamine release that is
specifically linked to active movements. This idea is attractive because it can provide an explanation for why so
many dopamine neurons are time-locked to movements. This proposal outlines three projects, all focusing on
spatial learning in the central complex, the primary center for spatial navigation in the Drosophila brain. In
each project, there is anatomical evidence from the Drosophila connectome that implies a role for dopamine
neurons. Moreover, in each project, there is already evidence that the dopamine neurons in question are active
when the fly is locomoting. This motivates our hypothesis that dopamine links movement to spatial learning.
Although these projects are linked conceptually, they each focus on a distinct dopamine cell type, and a distinct
form of spatial learning. First, we will determine how dopamine modulates learning about spatial position cues
in the head direction system. Second, we will investigate the hypothesis that dopamine modulates learning
about rotational velocity cues in the head direction system. Third, we will investigate the hypothesis that a
feedback circuit integrates information over time to discount the influence of environmental wind shifts on
head direction neurons. In all three projects, we use connectome analyses and computational modeling to
generate testable predictions about specific networks in the brain. Then, we test these predictions using in vivo
calcium imaging and/or electrophysiology as flies navigate in virtual reality environments. Our results should
shed light on the fundamental mechanisms underlying navigation behaviors in all complex species, including
ring attractor networks, Hebbian learning rules, and feedback loops. Broadly speaking, we think that dopamine
provides a control knob for modulating these mechanisms up or down. As such, we see dopaminergic neurons
as an entry point for an integrative understanding of network dynamics during complex cognitive processes.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Wilson其他文献
Rachel Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Wilson', 18)}}的其他基金
Mechanosensory feature extraction for directed motor control
用于定向运动控制的机械感觉特征提取
- 批准号:
10202742 - 财政年份:2017
- 资助金额:
$ 42.38万 - 项目类别:
Project 4: Neural Basis of Behavioral Sequences
项目 4:行为序列的神经基础
- 批准号:
10202764 - 财政年份:2017
- 资助金额:
$ 42.38万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
8039809 - 财政年份:2006
- 资助金额:
$ 42.38万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
7771723 - 财政年份:2006
- 资助金额:
$ 42.38万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
8617832 - 财政年份:2006
- 资助金额:
$ 42.38万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
7084882 - 财政年份:2006
- 资助金额:
$ 42.38万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
8415472 - 财政年份:2006
- 资助金额:
$ 42.38万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
7367079 - 财政年份:2006
- 资助金额:
$ 42.38万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
8220715 - 财政年份:2006
- 资助金额:
$ 42.38万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 42.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists