Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
基本信息
- 批准号:10209723
- 负责人:
- 金额:$ 43.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdenosineAntibodiesAntibody ResponseAttenuatedB-LymphocytesBCAR1 geneBasic ScienceBiochemicalBiologicalBiological ModelsBiologyBiotechnologyChromosomal translocationClustered Regularly Interspaced Short Palindromic RepeatsComplexCoupledCytosineCytosine deaminaseDNADeaminaseDeaminationDiagnosisDiseaseDistantEndonuclease IEngineeringEnzymesEpigenetic ProcessEventFamilyFamily memberGenerationsGenesGenetic EngineeringGenomeGenome StabilityGenome engineeringGenomic InstabilityGenomicsGuide RNAHyperactivityImmuneImmunoglobulin Somatic HypermutationImmunoglobulinsImpairmentKnock-outKnowledgeLaboratoriesLimesLinkMalignant NeoplasmsMedicineMolecularMutagenesisMutateMutationNatureNucleic AcidsNucleosidesOncogenicOutcomePathway interactionsPatientsPhysiologicalPlayPositioning AttributePropertyRNARNA BindingRNA EditingRattusReactionResistanceRetroviridaeRiskRoleSiteStructureSystemT-LymphocyteTerminator CodonTherapeuticTransfer RNATranslatingTranslational ResearchUracilVariantWorkZincactivation-induced cytidine deaminaseanti-canceranticancer activityapoB mRNA editing catalytic subunitbasechemotherapychimeric antigen receptorcostdisease-causing mutationds-DNAfrontiergenome editinggenomic locusimprovedinnovationinsertion/deletion mutationinsightmembernext generationprecise genome editingreconstitutionrepairedrisk minimizationsmall moleculespatiotemporaltooltransition mutation
项目摘要
This proposal aims to manipulate DNA deaminase enzymes to generate hyperactive and controllable base
editors that can be targeted for precise gene editing. Base editing of the immunoglobulin locus by AID, the
ancestral member of the AID/APOBEC family of cytosine deaminase enzymes, normally initiates maturation of
antibody responses in B-cells, while APOBECs provide protection against retroviruses. Out of their physiological
context, when DNA deaminases are directed by catalytically-impaired CRIPSR/Cas proteins, their base editing
activity can be used to introduce targeted mutations at a desired genomic locus. While this system offers a
potentially powerful means to edit the genome for biological or therapeutic purposes, base editors have two
barriers that limit their broader application in basic and translational research. First, DNA deaminases have
naturally evolved to be constrained enzymes with low overall catalytic activity, as hyperactivation is associated
with increased oncogenic mutations. Second, when dysregulated, AID/APOBECs are known to act outside of
their targets, promoting cancer mutagenesis, chromosomal translocations, and resistance to chemotherapy.
Given that natural regulatory constraints on DNA deaminases are lost in base editor complexes, these constructs
pose similar risks to the genome. In this proposal, we harness our extensive knowledge of the mechanism,
structure and function of deaminase enzymes in order to overcome these challenges. For one, hyperactive
deaminases have been generated to overcome the naturally attenuated activity, and we will exploit these variants
to evaluate the hypothesis that increasing the deamination rate can improve the efficiency of the base editing
reaction, while simultaneously improving precision. Second, we have devised split deaminases that can only be
reconstituted at the targeted locus under the control of a small molecule. This strategy newly offers
spatiotemporal control, a critical requirement that will facilitate the use of base editors in the lab and is essential
to therapeutic applications in patients. Given the wide range of potential uses for base editors, we will
demonstrate the importance of efficiency and control broadly across diverse genomic sites, and then specifically
by generating enhanced chimeric antigen receptor expressing T (CAR-T) cells as a model system. The tools
developed here will globally advance deaminases as base editors and will readily translate to other innovations
in CRISPR/Cas proteins, and to genome engineering more generally.
这项提议的目的是操纵DNA脱氨酶来产生高度活性和可控的碱基
可以作为精确基因编辑目标的编辑人员。AID对免疫球蛋白基因座的碱基编辑,
AID/APOBEC胞嘧啶脱氨酶家族的祖先成员,通常启动
B细胞中的抗体反应,而APOBECs提供对逆转录病毒的保护。在他们的生理上
背景,当DNA脱氨酶由催化受损的CRIPSR/Cas蛋白指导时,它们的碱基编辑
活性可用于在所需的基因组位置引入靶向突变。虽然该系统提供了
出于生物或治疗目的编辑基因组的潜在强大手段,碱基编辑有两种
限制其在基础研究和翻译研究中更广泛应用的障碍。首先,DNA脱氨酶
自然进化为受限制的酶,总体催化活性较低,因为过度激活与
致癌基因突变增加。其次,当调控失调时,AID/APOBEC已知在
他们的目标是促进癌症突变、染色体易位和对化疗的耐药性。
鉴于DNA脱氨酶的自然调控约束在碱基编辑复合体中丢失,这些结构
对基因组构成类似的风险。在这项提议中,我们利用了我们对该机制的广泛知识,
脱氨酶的结构和功能,以克服这些挑战。其一,过度活跃
已经产生了脱氨酶来克服自然减弱的活性,我们将利用这些变体
评估增加脱氨率可以提高基础编辑效率的假设
反应,同时提高精度。其次,我们已经设计出了只能被
在一个小分子的控制下,在靶点上重组。这一战略新提供了
时空控制,这是一项关键要求,将有助于在实验室中使用基本编辑程序,并且是必不可少的
应用于患者的治疗。考虑到基本编辑器的广泛潜在用途,我们将
展示跨不同基因组位置的效率和控制的重要性,然后具体
通过产生表达增强嵌合抗原受体的T(CAR-T)细胞作为模型系统。这些工具
在这里开发的将作为基础编辑在全球范围内推进脱氨酶,并将很容易转化为其他创新
在CRISPR/CAS蛋白中,以及更广泛的基因组工程中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rahul Manu Kohli其他文献
Rahul Manu Kohli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rahul Manu Kohli', 18)}}的其他基金
Inhibition and Catalytic Degradation of Promutagenic DNA Deaminases
促诱变 DNA 脱氨酶的抑制和催化降解
- 批准号:
10729968 - 财政年份:2023
- 资助金额:
$ 43.77万 - 项目类别:
Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
- 批准号:
10396080 - 财政年份:2021
- 资助金额:
$ 43.77万 - 项目类别:
Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
- 批准号:
10609857 - 财政年份:2021
- 资助金额:
$ 43.77万 - 项目类别:
Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
- 批准号:
10796080 - 财政年份:2021
- 资助金额:
$ 43.77万 - 项目类别:
Non-destructive epigenetic sequencing with DNA deaminase enzymes
使用 DNA 脱氨酶进行非破坏性表观遗传测序
- 批准号:
10186786 - 财政年份:2019
- 资助金额:
$ 43.77万 - 项目类别:
Non-destructive epigenetic sequencing with DNA deaminase enzymes
使用 DNA 脱氨酶进行非破坏性表观遗传测序
- 批准号:
9797035 - 财政年份:2019
- 资助金额:
$ 43.77万 - 项目类别:
Non-destructive epigenetic sequencing with DNA deaminase enzymes
使用 DNA 脱氨酶进行非破坏性表观遗传测序
- 批准号:
10004705 - 财政年份:2019
- 资助金额:
$ 43.77万 - 项目类别:
Combating Bacterial Drug Resistance by Targeting the Enzymes of Evolution
通过针对进化酶来对抗细菌耐药性
- 批准号:
8355227 - 财政年份:2012
- 资助金额:
$ 43.77万 - 项目类别:
Elucidating the Chemistry and Biology of Nucleic Acid Cytidine Deaminases in HIV
阐明 HIV 核酸胞苷脱氨酶的化学和生物学
- 批准号:
8136827 - 财政年份:2010
- 资助金额:
$ 43.77万 - 项目类别:
Elucidating the Chemistry and Biology of Nucleic Acid Cytidine Deaminases in HIV
阐明 HIV 核酸胞苷脱氨酶的化学和生物学
- 批准号:
8604126 - 财政年份:2010
- 资助金额:
$ 43.77万 - 项目类别:
相似国自然基金
基于ADK/Adenosine调控DNA甲基化探讨“利湿化瘀通络”法对2型糖尿病肾病足细胞裂孔膜损伤的干预机制研究
- 批准号:82074359
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
- 批准号:81570244
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
- 批准号:81171113
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting the A2B Adenosine Receptor for Immunoprevention of Pancreatic Cancer
靶向 A2B 腺苷受体用于胰腺癌的免疫预防
- 批准号:
10929664 - 财政年份:2023
- 资助金额:
$ 43.77万 - 项目类别:
Exploring the role of adenosine A2A receptors in Schizophrenia using opto-pharmacologically controlled allosteric modulation.
利用光药理学控制的变构调节探索腺苷 A2A 受体在精神分裂症中的作用。
- 批准号:
23K14685 - 财政年份:2023
- 资助金额:
$ 43.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
- 批准号:
10679989 - 财政年份:2023
- 资助金额:
$ 43.77万 - 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W016974/1 - 财政年份:2023
- 资助金额:
$ 43.77万 - 项目类别:
Research Grant
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
- 批准号:
23K07566 - 财政年份:2023
- 资助金额:
$ 43.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
- 批准号:
10760676 - 财政年份:2023
- 资助金额:
$ 43.77万 - 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
$ 43.77万 - 项目类别:
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
- 批准号:
2319114 - 财政年份:2023
- 资助金额:
$ 43.77万 - 项目类别:
Standard Grant
Late-Stage Functionalisation of Cyclic Guanosine Monophosphate - Adenosine Monophosphate
环单磷酸鸟苷-单磷酸腺苷的后期功能化
- 批准号:
2751533 - 财政年份:2022
- 资助金额:
$ 43.77万 - 项目类别:
Studentship
Postnatal development of adenosine kinase in the brainstem network that controls breathing
控制呼吸的脑干网络中腺苷激酶的出生后发育
- 批准号:
573323-2022 - 财政年份:2022
- 资助金额:
$ 43.77万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




