Combating Bacterial Drug Resistance by Targeting the Enzymes of Evolution

通过针对进化酶来对抗细菌耐药性

基本信息

  • 批准号:
    8355227
  • 负责人:
  • 金额:
    $ 222.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-30 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (Provided by the applicant) Abstract: The ability for pathogens to rapidly develop resistance to our best antimicrobials makes for a formidable treatment challenge, with devastating consequences to human health. The problem has been further exacerbated by the innovation gap in the development of new antimicrobials, partially resulting from the belief that resistance to new drugs is inevitable. The combination of a rising tide of resistance and the lack of novel approaches to the problem makes for a particularly dire situation. In response to this need, we seek to fundamentally alter the paradigm for combating drug resistance by targeting the very pathways that allow pathogens to mutate and evolve drug resistance. This impact of multidrug resistant pathogens is well exemplified by Pseudomonas aeruginosa, an organism that can become increasingly drug resistant through the disease course of cystic fibrosis, often greatly limiting therapeutic options and contributing to mortality. Evolvability and drug resistance in P. aeruginosa are tied to the pathway that governs stress responses, known as the SOS pathway. In our proposed research program, we aim to target key regulatory and effector enzymes, LexA and DinB, involved in this pro-mutagenic pathway. In its basal state, the regulatory protein LexA, a bi-functional repressor-protease, maintains stress response in an ""off"" state. When stress is sensed, LexA cleaves itself to turn ""on"" stress responses. As part of this response, DinB and other error-prone DNA polymerases are induced promoting the introduction of increased levels of mutations in the genome. Our strategy is to interrogate and perturb both ends of the SOS response. We propose to use chemical biology, enzymology and biophysical techniques to explore the substrate preferences for these enzymes and translate these findings into the discovery of small molecules that can perturb these enzymes of evolution. After establishing the molecular basis for LexA auto-proteolysis, we will uncover inhibitors of self-cleavage that can prevent the SOS switch from being flipped ""on"". In parallel, we propose to define the open active site of the error-prone polymerase DinB. We will exploit its tolerance to discover nucleotide analogs which can specifically inhibit this evolutionary polymerase. With chemical probes at hand, we will directly evaluate the impact of anti-evolutionary small molecules on the acquisition of drug resistance in P. aeruginosa. Our proposed studies will help advance our understanding of how mutations arise in bacterial pathogens, a question of fundamental scientific importance. In this manner, our investigations will shape how we think about the balanced requirements for stability and adaptability in the genome. Most importantly, our studies address the exigent need for innovative alternative approaches to combating the scourge of drug resistance. Public Health Relevance: The mounting public health problem of drug-resistant pathogens is yet more menacing given the innovation gap in the discovery of new antimicrobial drugs. We propose to pursue an innovative approach to this problem, by targeting the very pathways that allow a pathogen to adapt, evolve and thereby acquire drug resistance.
描述(由申请人提供) 摘要:病原体能够迅速对我们最好的抗菌剂产生耐药性,这是一项艰巨的治疗挑战,对人类健康造成毁灭性后果。这一问题因新抗菌药物开发方面的创新差距而进一步加剧,部分原因是人们认为对新药的耐药性是不可避免的。的 日益高涨的抵制浪潮加上缺乏解决问题的新办法,造成了一种特别可怕的局面。为了满足这一需求,我们寻求从根本上改变对抗耐药性的模式,瞄准使病原体发生突变和产生耐药性的途径。 多药耐药病原体的这种影响很好地例证了铜绿假单胞菌,铜绿假单胞菌是一种可以在囊性纤维化的病程中变得越来越耐药的生物体,通常极大地限制了治疗选择并导致死亡。铜绿假单胞菌的进化性和耐药性与控制应激反应的途径(称为SOS途径)有关。在我们提出的研究计划中,我们的目标是关键的监管和效应酶,莱克萨和DinB,参与这一促突变途径。在其基础状态下,调节蛋白莱克萨,一种双功能阻遏蛋白酶,将应激反应维持在“关闭”状态。当感觉到压力时,莱克萨会分裂自己,“开启”压力反应。作为这种反应的一部分,DinB和其他易错DNA聚合酶被诱导,促进基因组中突变水平的增加。我们的策略是询问和扰乱SOS反应的两端。我们建议使用化学生物学,酶学和生物物理技术来探索这些酶的底物偏好,并将这些发现转化为可以干扰这些酶进化的小分子的发现。在建立了莱克萨自身蛋白水解的分子基础之后,我们将发现自我切割的抑制剂,它可以防止SOS开关被“打开”。同时,我们建议定义易错聚合酶DinB的开放活性位点。我们将利用其耐受性来发现可以特异性抑制这种进化聚合酶的核苷酸类似物。有了化学探针,我们将直接评估抗进化小分子对铜绿假单胞菌获得耐药性的影响。我们提出的研究将有助于推进我们对细菌病原体如何发生突变的理解,这是一个具有根本科学重要性的问题。通过这种方式,我们的研究将塑造我们如何思考基因组中稳定性和适应性的平衡要求。最重要的是,我们的研究解决了迫切需要创新替代方法来打击耐药性祸害的问题。 公共卫生相关性:鉴于在发现新的抗微生物药物方面的创新差距,耐药病原体日益严重的公共卫生问题更具威胁性。我们建议寻求一种创新的方法来解决这个问题,通过靶向允许病原体适应,进化并从而获得耐药性的途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rahul Manu Kohli其他文献

Rahul Manu Kohli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rahul Manu Kohli', 18)}}的其他基金

Inhibition and Catalytic Degradation of Promutagenic DNA Deaminases
促诱变 DNA 脱氨酶的抑制和催化降解
  • 批准号:
    10729968
  • 财政年份:
    2023
  • 资助金额:
    $ 222.47万
  • 项目类别:
Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
  • 批准号:
    10396080
  • 财政年份:
    2021
  • 资助金额:
    $ 222.47万
  • 项目类别:
Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
  • 批准号:
    10609857
  • 财政年份:
    2021
  • 资助金额:
    $ 222.47万
  • 项目类别:
Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
  • 批准号:
    10796080
  • 财政年份:
    2021
  • 资助金额:
    $ 222.47万
  • 项目类别:
Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
  • 批准号:
    10209723
  • 财政年份:
    2021
  • 资助金额:
    $ 222.47万
  • 项目类别:
Non-destructive epigenetic sequencing with DNA deaminase enzymes
使用 DNA 脱氨酶进行非破坏性表观遗传测序
  • 批准号:
    10186786
  • 财政年份:
    2019
  • 资助金额:
    $ 222.47万
  • 项目类别:
Non-destructive epigenetic sequencing with DNA deaminase enzymes
使用 DNA 脱氨酶进行非破坏性表观遗传测序
  • 批准号:
    9797035
  • 财政年份:
    2019
  • 资助金额:
    $ 222.47万
  • 项目类别:
Non-destructive epigenetic sequencing with DNA deaminase enzymes
使用 DNA 脱氨酶进行非破坏性表观遗传测序
  • 批准号:
    10004705
  • 财政年份:
    2019
  • 资助金额:
    $ 222.47万
  • 项目类别:
Elucidating the Chemistry and Biology of Nucleic Acid Cytidine Deaminases in HIV
阐明 HIV 核酸胞苷脱氨酶的化学和生物学
  • 批准号:
    8136827
  • 财政年份:
    2010
  • 资助金额:
    $ 222.47万
  • 项目类别:
Elucidating the Chemistry and Biology of Nucleic Acid Cytidine Deaminases in HIV
阐明 HIV 核酸胞苷脱氨酶的化学和生物学
  • 批准号:
    8604126
  • 财政年份:
    2010
  • 资助金额:
    $ 222.47万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 222.47万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 222.47万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 222.47万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 222.47万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 222.47万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 222.47万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 222.47万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 222.47万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 222.47万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 222.47万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了