Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
基本信息
- 批准号:10396080
- 负责人:
- 金额:$ 43.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdenosineAntibodiesAntibody ResponseAttenuatedB-LymphocytesBCAR1 geneBasic ScienceBiochemicalBiologicalBiological ModelsBiologyBiotechnologyChromosomal translocationClustered Regularly Interspaced Short Palindromic RepeatsComplexCoupledCytosineCytosine deaminaseDNADeaminaseDeaminationDiagnosisDiseaseDistantEndonuclease IEngineeringEnzymesEpigenetic ProcessEventFamilyFamily memberGenerationsGenesGenetic EngineeringGenomeGenome StabilityGenome engineeringGenomic InstabilityGenomicsGuide RNAHyperactivityImmuneImmunoglobulin Somatic HypermutationImmunoglobulinsImpairmentKnock-outKnowledgeLaboratoriesLimesLinkMalignant NeoplasmsMedicineMolecularMutagenesisMutateMutationNatureNucleic AcidsNucleosidesOncogenicOutcomePathway interactionsPatientsPhysiologicalPlayPositioning AttributePropertyRNARNA BindingRNA EditingRattusReactionResistanceRetroviridaeRiskRoleSiteStructureSystemT-LymphocyteTerminator CodonTherapeuticTransfer RNATranslatingTranslational ResearchUracilVariantWorkZincactivation-induced cytidine deaminaseanti-canceranticancer activityapoB mRNA editing catalytic subunitbasebase editingbase editorchemotherapychimeric antigen receptorcostdisease-causing mutationds-DNAfrontiergenome editinggenomic locusimprovedinnovationinsertion/deletion mutationinsightmembernext generationprecise genome editingreconstitutionrepairedrisk minimizationsmall moleculespatiotemporaltooltransition mutation
项目摘要
This proposal aims to manipulate DNA deaminase enzymes to generate hyperactive and controllable base
editors that can be targeted for precise gene editing. Base editing of the immunoglobulin locus by AID, the
ancestral member of the AID/APOBEC family of cytosine deaminase enzymes, normally initiates maturation of
antibody responses in B-cells, while APOBECs provide protection against retroviruses. Out of their physiological
context, when DNA deaminases are directed by catalytically-impaired CRIPSR/Cas proteins, their base editing
activity can be used to introduce targeted mutations at a desired genomic locus. While this system offers a
potentially powerful means to edit the genome for biological or therapeutic purposes, base editors have two
barriers that limit their broader application in basic and translational research. First, DNA deaminases have
naturally evolved to be constrained enzymes with low overall catalytic activity, as hyperactivation is associated
with increased oncogenic mutations. Second, when dysregulated, AID/APOBECs are known to act outside of
their targets, promoting cancer mutagenesis, chromosomal translocations, and resistance to chemotherapy.
Given that natural regulatory constraints on DNA deaminases are lost in base editor complexes, these constructs
pose similar risks to the genome. In this proposal, we harness our extensive knowledge of the mechanism,
structure and function of deaminase enzymes in order to overcome these challenges. For one, hyperactive
deaminases have been generated to overcome the naturally attenuated activity, and we will exploit these variants
to evaluate the hypothesis that increasing the deamination rate can improve the efficiency of the base editing
reaction, while simultaneously improving precision. Second, we have devised split deaminases that can only be
reconstituted at the targeted locus under the control of a small molecule. This strategy newly offers
spatiotemporal control, a critical requirement that will facilitate the use of base editors in the lab and is essential
to therapeutic applications in patients. Given the wide range of potential uses for base editors, we will
demonstrate the importance of efficiency and control broadly across diverse genomic sites, and then specifically
by generating enhanced chimeric antigen receptor expressing T (CAR-T) cells as a model system. The tools
developed here will globally advance deaminases as base editors and will readily translate to other innovations
in CRISPR/Cas proteins, and to genome engineering more generally.
该建议旨在操纵DNA脱氨酶以产生过度活跃和可控的碱基
可以针对精确基因编辑的编辑。通过辅助
胞质脱氨酶的援助/APOBEC家族的祖先成员,通常启动成熟
B细胞中的抗体反应,而APOBEC可以保护逆转录病毒。从生理学出来
上下文,当DNA脱氨酶是由催化受损的CRIPSR/CAS蛋白引导的,它们的碱基编辑
活性可用于在所需的基因组基因座上引入靶向突变。虽然该系统提供了
为生物学或治疗目的编辑基因组的潜在强大方法,基础编辑有两个
限制其在基本和转化研究中更广泛应用的障碍。首先,DNA脱氨酶具有
自然进化为受约束的酶,总体催化活性低,因为过度激活与
随着致癌突变的增加。其次,当失调时,已知辅助/apobec在以外行动
它们的靶标,促进癌症诱变,染色体易位和对化学疗法的抗性。
鉴于在基本编辑器复合物中丢失了对DNA脱氨酶的自然调节限制,因此这些构造
与基因组构成类似的风险。在此提案中,我们利用我们对机制的广泛了解,
为了克服这些挑战,脱氨酶的结构和功能。一个,多动
已经生成了脱氨酶来克服自然减弱的活性,我们将利用这些变体
为了评估提高脱氨酸速率可以提高基本编辑效率的假设
反应,同时提高精度。其次,我们设计了只能是
在小分子的控制下在目标基因座进行重构。这个策略新提出
时空控制,这是一项关键要求,可以促进实验室中使用基本编辑器的使用,这是必不可少的
用于患者的治疗应用。鉴于基本编辑器的各种潜在用途,我们将
展示效率和控制的重要性,并在各种基因组部位上广泛进行,然后特别是
通过生成增强的嵌合抗原受体,以模型系统表达T(CAR-T)细胞。工具
这里开发的将在全球范围内作为基础编辑,并很容易转化为其他创新
在CRISPR/CAS蛋白中,更广泛地进行基因组工程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rahul Manu Kohli其他文献
Rahul Manu Kohli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rahul Manu Kohli', 18)}}的其他基金
Inhibition and Catalytic Degradation of Promutagenic DNA Deaminases
促诱变 DNA 脱氨酶的抑制和催化降解
- 批准号:
10729968 - 财政年份:2023
- 资助金额:
$ 43.79万 - 项目类别:
Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
- 批准号:
10609857 - 财政年份:2021
- 资助金额:
$ 43.79万 - 项目类别:
Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
- 批准号:
10796080 - 财政年份:2021
- 资助金额:
$ 43.79万 - 项目类别:
Engineering Efficient and Controllable Base Editors
工程高效且可控的碱基编辑器
- 批准号:
10209723 - 财政年份:2021
- 资助金额:
$ 43.79万 - 项目类别:
Non-destructive epigenetic sequencing with DNA deaminase enzymes
使用 DNA 脱氨酶进行非破坏性表观遗传测序
- 批准号:
10186786 - 财政年份:2019
- 资助金额:
$ 43.79万 - 项目类别:
Non-destructive epigenetic sequencing with DNA deaminase enzymes
使用 DNA 脱氨酶进行非破坏性表观遗传测序
- 批准号:
9797035 - 财政年份:2019
- 资助金额:
$ 43.79万 - 项目类别:
Non-destructive epigenetic sequencing with DNA deaminase enzymes
使用 DNA 脱氨酶进行非破坏性表观遗传测序
- 批准号:
10004705 - 财政年份:2019
- 资助金额:
$ 43.79万 - 项目类别:
Combating Bacterial Drug Resistance by Targeting the Enzymes of Evolution
通过针对进化酶来对抗细菌耐药性
- 批准号:
8355227 - 财政年份:2012
- 资助金额:
$ 43.79万 - 项目类别:
Elucidating the Chemistry and Biology of Nucleic Acid Cytidine Deaminases in HIV
阐明 HIV 核酸胞苷脱氨酶的化学和生物学
- 批准号:
8136827 - 财政年份:2010
- 资助金额:
$ 43.79万 - 项目类别:
Elucidating the Chemistry and Biology of Nucleic Acid Cytidine Deaminases in HIV
阐明 HIV 核酸胞苷脱氨酶的化学和生物学
- 批准号:
8604126 - 财政年份:2010
- 资助金额:
$ 43.79万 - 项目类别:
相似国自然基金
急性抗体介导排斥反应中NTPDase1-腺苷通路激活巨噬细胞及其损伤的机制研究
- 批准号:82270782
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
急性抗体介导排斥反应中NTPDase1-腺苷通路激活巨噬细胞及其损伤的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
抗dsDNA抗体交叉反应NMDAR调控CREB-BDNF及PI3K/Akt信号通路在HIV相关神经认知紊乱发病中的作用机制研究
- 批准号:81902129
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
SAM 对自身免疫肺气肿大鼠CD4+T淋巴细胞穿孔素基因启动子甲基化状态及AECA的影响
- 批准号:81560012
- 批准年份:2015
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
AMPK介导Ghrelin拮抗体外循环心肌缺血再灌注损伤的作用和机制研究
- 批准号:81400308
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A High-Throughput Screening Platform to Discover RNA Methylation Inhibitors
发现 RNA 甲基化抑制剂的高通量筛选平台
- 批准号:
10705980 - 财政年份:2023
- 资助金额:
$ 43.79万 - 项目类别:
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 43.79万 - 项目类别:
The Role of m6A-RNA Methylation in Memory Formation and Recall and Its Modulation and Influence on Long-Term Outcomes as a Consequence of Early Life Lead Exposure
m6A-RNA 甲基化在记忆形成和回忆中的作用及其对早期铅暴露对长期结果的影响
- 批准号:
10658020 - 财政年份:2023
- 资助金额:
$ 43.79万 - 项目类别:
Identifying and targeting a novel mechanism of chemotherapy-induced immunotherapeutic resistance in non-small cell lung cancer
识别和靶向非小细胞肺癌化疗引起的免疫治疗耐药的新机制
- 批准号:
10657188 - 财政年份:2023
- 资助金额:
$ 43.79万 - 项目类别:
Basic and Translational Mechanisms of Alloimmunization to RBC Transfusion. Project 2
红细胞输注同种免疫的基本和转化机制。
- 批准号:
10711669 - 财政年份:2023
- 资助金额:
$ 43.79万 - 项目类别: