Optically mapping tissue biomechanics during neural tube closure
神经管闭合过程中光学映射组织生物力学
基本信息
- 批准号:10208917
- 负责人:
- 金额:$ 11.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdvanced DevelopmentAffectApicalAtomic Force MicroscopyAwardBiochemicalBiologicalBiologyBiomechanicsBiomedical ResearchBiophysicsCellsComplementComplexCongenital AbnormalityCuesDataDefectDetectionDevelopmentDevelopmental BiologyDevelopmental DiagnosticDorsalElasticityEmbryoEmbryonic DevelopmentEnsureEnvironmental Risk FactorEventEvolutionF-ActinFailureGasesGene CombinationsGene ExpressionGeneticGoalsGoldGrantHourHumanIn SituKnowledgeLeadLightingLinkMeasurementMeasuresMechanicsMethodsMicroscopicMicroscopyModelingModulusMonitorMorphogenesisMorphologyMusNamesNeural FoldNeural Tube ClosureNeural Tube DefectsNeural tubeNoiseOpticsPatternPhenotypePregnancyProcessPropertyRecoveryRegulationResearchResearch PersonnelResistanceResolutionRoleSample SizeSamplingScanningScienceShapesSignal TransductionSpeedSpinal DysraphismStimulusTechniquesTechnologyTestingTherapeuticTimeTissue EngineeringTissuesTrainingabsorptionbasebiomechanical engineeringcell behaviorconstrictionconvergent extensiondriving forceelastographyembryo tissueimaging modalityimprovedin vivoinnovationinstrumentlight scatteringmechanical propertiesmutant mouse modelneural platenovelphotonicsrelating to nervous systemskillstechnology developmenttechnology research and developmenttechnology validation
项目摘要
Project Summary
This project features the development of advanced photonic technology to attack a major unmet challenge in
developmental biology.
Embryonic morphogenesis results from a complex combination of gene expression, biochemical signaling, and
biomechanics. While methods to evaluate the first two are well established, our knowledge of biomechanics of
the embryo morphogenesis is poorly understood because of the lack of technical approaches. Elucidating the
biomechanics underlying morphogenesis is essential towards understanding the interplay between mechanical
regulation, gene expression and tissue patterning that drive embryogenesis, and will potentially lead to exciting
innovations in therapeutic strategies and diagnostics for developmental defects. Current technology for tissue
elasticity measurement is slow and invasive, thus cannot measure mechanical properties within living 3D
embryonic tissue in-situ. This project will develop an all-optical approach (line-scanning Brillouin microscopy,
LSBM) to fulfill this unmet need. LSBM allows rapid 3D mapping of the elasticity of embryonic tissue in-situ with
high-resolution, non-invasive, and non-contact manner.
After technology validation, I will use this technique to address an open question of the development field related
to the role of tissue biomechanics in the process of neural tube closure. The central hypothesis of this grant is
that the neural tube defect is related to the altered mechanical properties of tissue. Specifically, I will investigate
the role of cellular activities, such as apical constriction, in the stiffness change of tissue during different stages
of neurulation and specific genetic factors contribute to the abnormal changes in tissue stiffness.
This K25 award, through its training and research components, will provide me with the skills to create a strong
biological part in my future research, in which I will utilize the enabling technological capabilities to address the
important needs in developmental biology. The overall effort will hasten my transition to being an independent
investigator at the forefront of the interdisciplinary interface of technology development and biomedical research.
项目摘要
该项目的特点是开发先进的光子技术,以应对
发育生物学。
胚胎形态发生是基因表达、生化信号和
生物力学。虽然评估前两种疾病的方法已经确立,但我们对生物力学的了解
由于缺乏技术手段,人们对胚胎的形态发生知之甚少。澄清
形态发生的生物力学对于理解机械之间的相互作用是必不可少的。
推动胚胎发生的调控、基因表达和组织模式,并可能导致令人兴奋的
发展缺陷的治疗策略和诊断方面的创新。当前的组织技术
弹性测量缓慢且具有侵入性,因此无法在Living 3D中测量机械性能
胚胎组织原位移植。该项目将开发一种全光学方法(行扫描布里渊显微镜,
LSBM(LSBM:行情)来满足这一未得到满足的需求.LSBM允许原位快速绘制胚胎组织弹性的3D图
高分辨率、非侵入性、非接触性。
在技术验证之后,我将使用该技术来解决与开发领域相关的一个公开问题
组织生物力学在神经管闭合过程中的作用。这笔赠款的中心假设是
神经管缺陷与组织机械性能的改变有关。具体地说,我将调查
根尖收缩等细胞活动在不同时期组织僵硬变化中的作用
神经形成和特定的遗传因素导致组织僵硬的异常变化。
这个K25奖项,通过它的培训和研究部分,将为我提供创造一个强大的
在我未来的研究中,我将利用使能的技术能力来解决
发育生物学的重要需求。整体的努力将加速我向独立人士的转变
处于技术开发和生物医学研究交叉学科接口前沿的研究员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jitao Zhang其他文献
Jitao Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jitao Zhang', 18)}}的其他基金
Rapid non-invasive biomechanical imaging of neural crest cell migration in vivo
体内神经嵴细胞迁移的快速非侵入性生物力学成像
- 批准号:
10811154 - 财政年份:2023
- 资助金额:
$ 11.4万 - 项目类别:
Optically mapping tissue biomechanics during neural tube closure
神经管闭合过程中光学映射组织生物力学
- 批准号:
10540467 - 财政年份:2022
- 资助金额:
$ 11.4万 - 项目类别:
Optically mapping tissue biomechanics during neural tube closure
神经管闭合过程中光学映射组织生物力学
- 批准号:
10790936 - 财政年份:2019
- 资助金额:
$ 11.4万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 11.4万 - 项目类别:
Research Grant