Integrative clustering of cells and samples using multi-modal single-cell data
使用多模态单细胞数据对细胞和样本进行综合聚类
基本信息
- 批准号:10215623
- 负责人:
- 金额:$ 35.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAddressAfricanAlgorithmsAmericanApacheAtlasesBayesian ModelingBioinformaticsBiologicalBiological ProcessBiologyBiometryBiopsyBostonBrainCatalogsCellsCellular AssayCharacteristicsChromatinClinical DataCloud ComputingComplexComputational BiologyDataData SetDevelopmentDevelopmental ProcessDevicesDiseaseEnvironmentEuropeanFundingGene ClusterGene ExpressionGenomicsGoalsHigh Performance ComputingHumanImmunologyIndividualLesionLettersLungLung noduleMalignant NeoplasmsMalignant neoplasm of prostateMassachusettsMeasurementMeasuresMessenger RNAMethodsMicrofluidicsModelingMolecularMolecular and Cellular BiologyNatureNoiseNormal CellNoseOpiate AddictionPatientsProceduresProcessProteinsProtocols documentationResearch PersonnelRunningSamplingSmokerSmokingSpeedSubgroupTechniquesTechnologyTissuesVisualizationbasecancer heterogeneitycell typecloud basedcloud platformcluster computingcombatcomplex biological systemscomputer sciencedigitaldiscrete dataepigenetic markerexperimental studygenomic datahigh riskhuman tissueinsightlanguage processinglarge scale datalung developmentmultimodal datamultimodalitymultiple data typesnew technologynovelpremalignantprotein biomarkersprotein expressionsingle cell analysissingle cell technologysingle-cell RNA sequencinguser-friendlyweb interface
项目摘要
Single-cell genomic technologies such as single-cell RNA-seq have emerged as powerful techniques to quantify
molecular states of individual cells and can be used to elucidate the cellular building blocks of complex tissues
and diseases. Given recent rapid advances in single-cell technologies, novel statistical and computational
approaches are needed to efficiently analyze large-scale single-cell datasets with multiple data types such as
gene and protein expression. Discrete Bayesian hierarchical models have been widely used for unsupervised
modeling of discrete data types in fields such as Nature Language Processing (NLP). We have developed a
Bayesian hierarchical model called Cellular Latent Dirichlet Allocation (Celda) to perform bi-clustering of genes
into modules and cells into subpopulations. We will develop novel models that can perform clustering of cells
into subpopulations using multi-modal genomic data or clustering of patients into subgroups using both single-
cell data and patient-level characteristics. These novel methods will be made available in a scalable and
interpretable cloud-based framework accessible to both computational and non-computational users. The aims
of this study are to (1) develop novel models to perform integrative multi-modal and multi-level clustering with
single-cell data, (2) develop an R package and cloud-based platform with a web interface for rapid inference and
visualization of large-scale datasets, and (3) apply Celda models to single-cell datasets from a variety of
biological settings including cancer, lung development, and immunology. Overall, these aims will be
accomplished by an interdisciplinary team with strong expertise in computational biology and bioinformatics,
biostatistics, computer science, and molecular and cellular biology.
单细胞基因组技术,如单细胞RNA-seq,已经成为量化基因组的强大技术。
单个细胞的分子状态,并可用于阐明复杂组织的细胞构建块
和疾病。考虑到单细胞技术最近的快速发展,
需要有效分析具有多种数据类型的大规模单像元数据集的方法,
基因和蛋白质表达。离散贝叶斯分层模型已被广泛用于无监督
在诸如自然语言处理(NLP)等领域中对离散数据类型进行建模。我们已经开发出一种
贝叶斯层次模型称为细胞潜在狄利克雷分配(Celda),用于执行基因的双聚类
模块和细胞的亚群。我们将开发新的模型,可以执行细胞聚类
使用多模态基因组数据将患者聚类成亚群,或者使用单模态基因组数据和多模态基因组数据将患者聚类成亚群。
细胞数据和患者水平特征。这些新的方法将在可扩展的和
计算和非计算用户都可以访问的可解释的基于云的框架。目标
本研究的目的是(1)开发新的模型来执行综合多模态和多层次聚类,
单细胞数据,(2)开发一个R包和基于云的平台,具有用于快速推理的Web界面,
大规模数据集的可视化,以及(3)将Celda模型应用于各种单细胞数据集
生物环境,包括癌症、肺发育和免疫学。总的来说,这些目标将是
由一个在计算生物学和生物信息学方面具有丰富专业知识的跨学科团队完成,
生物统计学、计算机科学以及分子和细胞生物学。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterization and decontamination of background noise in droplet-based single-cell protein expression data with DecontPro.
使用 DecontPro 对基于液滴的单细胞蛋白质表达数据中的背景噪声进行表征和净化。
- DOI:10.1101/2023.01.27.525964
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yin,Yuan;Yajima,Masanao;Campbell,JoshuaD
- 通讯作者:Campbell,JoshuaD
Machine learning enables design automation of microfluidic flow-focusing droplet generation.
- DOI:10.1038/s41467-020-20284-z
- 发表时间:2021-01-04
- 期刊:
- 影响因子:16.6
- 作者:Lashkaripour A;Rodriguez C;Mehdipour N;Mardian R;McIntyre D;Ortiz L;Campbell J;Densmore D
- 通讯作者:Densmore D
Celda: a Bayesian model to perform co-clustering of genes into modules and cells into subpopulations using single-cell RNA-seq data.
- DOI:10.1093/nargab/lqac066
- 发表时间:2022-09
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua D Campbell其他文献
Joshua D Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua D Campbell', 18)}}的其他基金
Investigating the mechanisms of driver genes associated with ancestry and aggressiveness in prostate cancer
研究与前列腺癌的血统和侵袭性相关的驱动基因的机制
- 批准号:
10403592 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Investigating the mechanisms of driver genes associated with ancestry and aggressiveness in prostate cancer
研究与前列腺癌的血统和侵袭性相关的驱动基因的机制
- 批准号:
10615833 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10684720 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10490301 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Investigating the mechanisms of driver genes associated with ancestry and aggressiveness in prostate cancer
研究与前列腺癌的血统和侵袭性相关的驱动基因的机制
- 批准号:
10198345 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10305242 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Integrative clustering of cells and samples using multi-modal single-cell data
使用多模态单细胞数据对细胞和样本进行综合聚类
- 批准号:
9981822 - 财政年份:2019
- 资助金额:
$ 35.89万 - 项目类别:
相似海外基金
African American (AA) Communities Speak: Partnering with AAs in the North and South to Train Palliative Care Clinicians to Address Interpersonal and Systemic Racism and Provide Culturally Aligned Care
非裔美国人 (AA) 社区发言:与北部和南部的 AA 合作,培训姑息治疗临床医生,以解决人际和系统性种族主义并提供文化一致的护理
- 批准号:
10734272 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
GODDESS (Gathering Online for Dialogue and Discussion to Enhance Social Support): Engaging young African American women in a virtual group app to address alcohol misuse, sexual risk, and PrEP in NC
GODDESS(在线聚集进行对话和讨论,以加强社会支持):让年轻的非裔美国女性参与虚拟团体应用程序,以解决北卡罗来纳州的酒精滥用、性风险和 PrEP 问题
- 批准号:
10541028 - 财政年份:2022
- 资助金额:
$ 35.89万 - 项目类别:
GODDESS (Gathering Online for Dialogue and Discussion to Enhance Social Support): Engaging young African American women in a virtual group app to address alcohol misuse, sexual risk, and PrEP in NC
GODDESS(在线聚集进行对话和讨论,以加强社会支持):让年轻的非裔美国女性参与虚拟团体应用程序,以解决北卡罗来纳州的酒精滥用、性风险和 PrEP 问题
- 批准号:
10684239 - 财政年份:2022
- 资助金额:
$ 35.89万 - 项目类别:
Multilevel Community-Based Mental Health Intervention to Address Structural Inequities and Adverse Disparate Consequences of COVID-19 Pandemic on Latinx Immigrants and African Refugees
基于社区的多层次心理健康干预措施,以解决结构性不平等以及 COVID-19 疫情对拉丁裔移民和非洲难民造成的不同不利后果
- 批准号:
10674390 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
A multidimensional Digital Approach to Address Vaccine Hesitancy and Increase COVID-19 Vaccine Uptake among African American Young Adults in the South
解决疫苗犹豫问题并提高南方非裔美国年轻人对 COVID-19 疫苗接种率的多维数字方法
- 批准号:
10395616 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Basic Needs Navigation Intervention to Address Multidimensional Adversity in African Americans with Diabetic Kidney Disease
基本需求导航干预,以解决患有糖尿病肾病的非裔美国人的多维逆境
- 批准号:
10352781 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Multilevel Community-Based Mental Health Intervention to Address Structural Inequities and Adverse Disparate Consequences of COVID-19 Pandemic on Latinx Immigrants and African Refugees
基于社区的多层次心理健康干预措施,以解决结构性不平等以及 COVID-19 疫情对拉丁裔移民和非洲难民造成的不同不利后果
- 批准号:
10308209 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
A multidimensional Digital Approach to Address Vaccine Hesitancy and Increase COVID-19 Vaccine Uptake among African American Young Adults in the South
解决疫苗犹豫问题并提高南方非裔美国年轻人对 COVID-19 疫苗接种率的多维数字方法
- 批准号:
10786490 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Multilevel Community-Based Mental Health Intervention to Address Structural Inequities and Adverse Disparate Consequences of COVID-19 Pandemic on Latinx Immigrants and African Refugees
基于社区的多层次心理健康干预措施,以解决结构性不平等以及 COVID-19 疫情对拉丁裔移民和非洲难民造成的不同不利后果
- 批准号:
10904472 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Reducing Hypertension among African American Men: A Mobile Stress Management Intervention to Address Health Disparities
减少非裔美国男性的高血压:解决健康差异的移动压力管理干预措施
- 批准号:
10821849 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别: