Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
基本信息
- 批准号:10490301
- 负责人:
- 金额:$ 40.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsBayesian ModelingBiological ProcessCancer EtiologyCancer PatientCancer Research ProjectCarcinogensChineseClinicalCommunitiesComputer softwareComputing MethodologiesCredentialingCytidine DeaminaseDataData SetDisadvantagedEnsureEtiologyEvolutionFamilyFingerprintFundingGenomicsGoalsGoldHemorrhageHumanIndividualInformaticsInstitutionJointsKnowledgeLearningMalignant NeoplasmsMeta-AnalysisMethodsModelingMutationNoisePatientsPatternProbabilityProceduresProcessResearch PersonnelSamplingSoftware ToolsStatistical MethodsSubgroupTechniquesTechnologyTimeUncertaintyVariantVisualizationanticancer researchbasecBioPortalcancer genomecancer genomicscigarette smokecohortflexibilitygenome analysishigh dimensionalityimprovedinsightinterestlarge scale datamethod developmentnoveloperationpredictive signatureprotein activationsoftware developmenttargeted sequencingtooltumor
项目摘要
The goals of this proposal are to develop novel statistical methods, more accurate inference procedures, and
interactive software tools to perform mutational signature deconvolution in cancer samples. Mutational
signatures are patterns of co-occurring mutations that can reveal insights into a cancer's etiology and evolution.
Currently, non-negative matrix factorization (NMF) is the “gold-standard” for mutational signature deconvolution.
However, NMF has several deficiencies in that it cannot do the following things: 1) predict signatures in new
samples, 2) perform joint learning of known and novel signatures at the same time, 3) alleviate problems from
signature “bleeding”, 4) cluster tumors into subgroups based on mutational signature profiles, and 5) characterize
uncertainty in model fit. In this proposal, we will develop a novel Bayesian hierarchical models that overcome
the limitations of NMF. Furthermore, there is a lack of interactive software for mutational signature inference and
visualization for non-computational users. We will also develop an R/Shiny interface on top of our R package to
facilitate data preprocessing, inference, and visualization of large-scale datasets. This interface will have a cloud
backend to facilitate computationally intensive operations. Overall, this software will streamline mutational
signature analysis for noncomputational researchers and will have the capability to interface with other projects
from the Informatics Technology for Cancer Research (ITCR) program. Finally, we will analyze a novel targeted
sequencing dataset from Chinese patients and perform a meta-analysis of all publicly available variants to
generate a novel reference set of mutational signatures for investigators to use in their own studies. Overall, our
tools will be of great interest to the cancer community as it will provide greater insights into mutational signature
patterns and will be useful in clinical settings to reveal insights into cancer etiology.
这项提议的目标是开发新的统计方法,更准确的推断程序,以及
在癌症样本中执行突变签名去卷积的交互式软件工具。突变
签名是一种共生突变的模式,可以揭示癌症的病因和进化。
目前,非负矩阵分解(NMF)是突变签名去卷积的“黄金标准”。
然而,NMF有几个不足之处,它不能做以下事情:1)在新的
样本,2)同时执行已知签名和新签名的联合学习,3)缓解以下问题
特征“出血”,4)基于突变特征曲线将肿瘤分类为亚组,以及5)表征
模型拟合中的不确定性。在这个方案中,我们将开发一种新的贝叶斯分层模型,该模型克服了
NMF的局限性。此外,还缺乏用于突变签名推理和
面向非计算性用户的可视化。我们还将在我们的R包上开发一个R/SHINY界面,以
促进大规模数据集的数据预处理、推理和可视化。此界面将有一个云
后端,以方便计算密集型操作。总体而言,这款软件将简化变异
用于非计算性研究人员的签名分析,并将能够与其他项目接口
来自癌症研究信息学技术(ITCR)计划。最后,我们将分析一部有针对性的小说
对来自中国患者的数据集进行测序,并对所有公开可用的变异进行荟萃分析
生成一组新的突变签名,供研究人员在自己的研究中使用。总的来说,我们的
这些工具将引起癌症社区的极大兴趣,因为它将提供对突变签名的更深入的见解
模式,并将在临床环境中有用,以揭示对癌症病因的洞察。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua D Campbell其他文献
Joshua D Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua D Campbell', 18)}}的其他基金
Investigating the mechanisms of driver genes associated with ancestry and aggressiveness in prostate cancer
研究与前列腺癌的血统和侵袭性相关的驱动基因的机制
- 批准号:
10403592 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Investigating the mechanisms of driver genes associated with ancestry and aggressiveness in prostate cancer
研究与前列腺癌的血统和侵袭性相关的驱动基因的机制
- 批准号:
10615833 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10684720 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Investigating the mechanisms of driver genes associated with ancestry and aggressiveness in prostate cancer
研究与前列腺癌的血统和侵袭性相关的驱动基因的机制
- 批准号:
10198345 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10305242 - 财政年份:2021
- 资助金额:
$ 40.26万 - 项目类别:
Integrative clustering of cells and samples using multi-modal single-cell data
使用多模态单细胞数据对细胞和样本进行综合聚类
- 批准号:
10215623 - 财政年份:2019
- 资助金额:
$ 40.26万 - 项目类别:
Integrative clustering of cells and samples using multi-modal single-cell data
使用多模态单细胞数据对细胞和样本进行综合聚类
- 批准号:
9981822 - 财政年份:2019
- 资助金额:
$ 40.26万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 40.26万 - 项目类别:
Continuing Grant