Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
基本信息
- 批准号:10684720
- 负责人:
- 金额:$ 40.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAdoptionAlgorithmsBayesian ModelingBiological ProcessCancer EtiologyCancer PatientCancer Research ProjectCarcinogensChineseClinicalCommunitiesComputer softwareComputing MethodologiesCredentialingCytidine DeaminaseDataData SetDisadvantagedEnsureEtiologyEvolutionFamilyFingerprintFundingGenomicsGoalsHemorrhageHumanIndividualInformaticsInstitutionJointsKnowledgeLearningMalignant NeoplasmsMeta-AnalysisMethodsModelingMutationNoiseParameter EstimationPatientsPatternProbabilityProceduresProcessResearch PersonnelSamplingSoftware ToolsStatistical MethodsSubgroupTechniquesTechnologyTimeUncertaintyVariantVisualizationanticancer researchbasecBioPortalcancer genomecancer genomicscigarette smokecohortflexibilitygenome analysishigh dimensionalityimprovedinsightinterestlarge scale datamethod developmentnoveloperationpredictive signatureprotein activationsoftware developmenttargeted sequencingtooltumor
项目摘要
The goals of this proposal are to develop novel statistical methods, more accurate inference procedures, and
interactive software tools to perform mutational signature deconvolution in cancer samples. Mutational
signatures are patterns of co-occurring mutations that can reveal insights into a cancer's etiology and evolution.
Currently, non-negative matrix factorization (NMF) is the “gold-standard” for mutational signature deconvolution.
However, NMF has several deficiencies in that it cannot do the following things: 1) predict signatures in new
samples, 2) perform joint learning of known and novel signatures at the same time, 3) alleviate problems from
signature “bleeding”, 4) cluster tumors into subgroups based on mutational signature profiles, and 5) characterize
uncertainty in model fit. In this proposal, we will develop a novel Bayesian hierarchical models that overcome
the limitations of NMF. Furthermore, there is a lack of interactive software for mutational signature inference and
visualization for non-computational users. We will also develop an R/Shiny interface on top of our R package to
facilitate data preprocessing, inference, and visualization of large-scale datasets. This interface will have a cloud
backend to facilitate computationally intensive operations. Overall, this software will streamline mutational
signature analysis for noncomputational researchers and will have the capability to interface with other projects
from the Informatics Technology for Cancer Research (ITCR) program. Finally, we will analyze a novel targeted
sequencing dataset from Chinese patients and perform a meta-analysis of all publicly available variants to
generate a novel reference set of mutational signatures for investigators to use in their own studies. Overall, our
tools will be of great interest to the cancer community as it will provide greater insights into mutational signature
patterns and will be useful in clinical settings to reveal insights into cancer etiology.
该提案的目标是开发新的统计方法,更准确的推理程序,
交互式软件工具,用于在癌症样品中执行突变特征去卷积。突变
特征是共同发生的突变模式,可以揭示癌症的病因和演变。
目前,非负矩阵分解(NMF)是突变签名反卷积的“黄金标准”。
然而,NMF有几个缺点,因为它不能做以下事情:1)预测新的签名
样本,2)同时执行已知和新签名的联合学习,3)减轻
特征“出血”,4)基于突变特征谱将肿瘤聚类为亚组,和5)表征
模型拟合的不确定性。在这个建议中,我们将开发一个新的贝叶斯分层模型,克服
NMF的局限性。此外,缺乏用于突变特征推断的交互式软件,
非计算用户的可视化。我们还将在R软件包上开发一个R/Shiny界面,
促进数据预处理、推理和大规模数据集的可视化。这个界面会有一个云
后端以促进计算密集型操作。总的来说,这个软件将简化突变
非计算研究人员的签名分析,并将有能力与其他项目的接口
癌症研究信息技术(ITCR)项目。最后,我们将分析一部有针对性的小说
中国患者的测序数据集,并对所有公开可用的变体进行荟萃分析,
生成一组新的参考突变特征,供研究人员在自己的研究中使用。总体而言,我们
这些工具将引起癌症社区的极大兴趣,因为它将为突变特征提供更深入的见解。
模式,并将在临床环境中有用,以揭示癌症病因学的见解。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua D Campbell其他文献
Joshua D Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua D Campbell', 18)}}的其他基金
Investigating the mechanisms of driver genes associated with ancestry and aggressiveness in prostate cancer
研究与前列腺癌的血统和侵袭性相关的驱动基因的机制
- 批准号:
10403592 - 财政年份:2021
- 资助金额:
$ 40.11万 - 项目类别:
Investigating the mechanisms of driver genes associated with ancestry and aggressiveness in prostate cancer
研究与前列腺癌的血统和侵袭性相关的驱动基因的机制
- 批准号:
10615833 - 财政年份:2021
- 资助金额:
$ 40.11万 - 项目类别:
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10490301 - 财政年份:2021
- 资助金额:
$ 40.11万 - 项目类别:
Investigating the mechanisms of driver genes associated with ancestry and aggressiveness in prostate cancer
研究与前列腺癌的血统和侵袭性相关的驱动基因的机制
- 批准号:
10198345 - 财政年份:2021
- 资助金额:
$ 40.11万 - 项目类别:
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10305242 - 财政年份:2021
- 资助金额:
$ 40.11万 - 项目类别:
Integrative clustering of cells and samples using multi-modal single-cell data
使用多模态单细胞数据对细胞和样本进行综合聚类
- 批准号:
10215623 - 财政年份:2019
- 资助金额:
$ 40.11万 - 项目类别:
Integrative clustering of cells and samples using multi-modal single-cell data
使用多模态单细胞数据对细胞和样本进行综合聚类
- 批准号:
9981822 - 财政年份:2019
- 资助金额:
$ 40.11万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 40.11万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 40.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 40.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 40.11万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 40.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 40.11万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 40.11万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 40.11万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 40.11万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 40.11万 - 项目类别:
Standard Grant