Post-Translational Control of TET Function in Lymphoma

淋巴瘤 TET 功能的翻译后控制

基本信息

项目摘要

TET DNA hydroxylases are alpha-ketoglutarate (αKG)-dependent enzymes that catalyze the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), thus promoting DNA demethylation. Mapping of 5hmC marks at single base resolution demonstrated that the main role of TET enzymes is to maintain gene enhancers hypomethylated and active. Enhancers are genomic areas to which transcription factors bind to modulate gene expression programs. Hyperactive clusters of enhancers that are densely occupied by transcriptional factors are termed super- enhancers and are typically found in cancer. Like promoters, enhancers/super-enhancers are regulated by their DNA methylation status, a process that often goes awry in cancer. Thus, given that active enhancers and super- enhancers are oncogenic in nature, and that TET enzymes maintain them hypomethylated and active, we postulate that increased TET activity may itself be oncogenic. Mitochondria function as signaling organelles by generating substrates that fuel epigenetic changes, including for example acetylation and methylation of DNA and histones, respectively. Recently, we and others described a subtler interplay between mitochondria and epigenetics, wherein the levels of the intermediate metabolites αKG and 2-hydroxyglutarate were found to modulate the activity of TET enzymes, thus controlling DNA methylation. These findings led us to hypothesize that intermediary metabolism plays as an important role in the control of DNA methylation. Specifically, we posited that the mitochondrial enzymes D-2- and L-2-hydroxyglutarate dehydrogenase (D2HGDH and L2HGDH), which catalyze the interconversion of 2-HG to αKG, are integral to the cross talk between mitochondrial metabolism, TET function and super-enhancer demethylation/activation. To expand on this initial concept, we sought to identify upstream signals that regulate D2HGDH and L2HGDH expression and, consequently, influence TET function and enhancer methylation/activity. Using reporter and ChIP assays, inducible cell lines and mouse models, we recently reported that MYC transcriptionally activates D2HGDH and L2HGDH and, in a D2HGDH/L2HGDH/αKG-dependent manner, induces TET function leading to DNA demethylation in vitro and in vivo. Remarkably, we discovered that the MYC/D2-L2HGDH/αKG axis also promotes the nuclear accumulation of TET1, TET2 and TET3, in association with enhanced O-GlcNAcylation, a post-translational modification executed by another mitochondrial enzyme, O-GlcNAc transferase (OGT). Further, we preliminarily showed that in in diffuse large B cell lymphoma (DLBCL), MYC levels associated with enhancer methylation and target gene expression. Together, these data uncovered a novel mitochondrial signaling axis which includes MYC at the proximal point, D2/L2HGDH and OGT at the center, and, distally, TET activity and subcellular location. In this proposal, we will use human B cell lymphoma models in vitro and in vivo, to test the overarching hypothesis that intermediary metabolism, in part due to MYC activity, induces TET function, maintains oncogenic enhancers/super-enhancers hypomethylated and active and promote cancer. Our specific aims are: AIM 1) Determine the mechanistic basis for the increased O-GlcNAcylation mediated by the MYC-D2/L2HGDH-αKG axis and its role in promoting TET nuclear localization and enhancer activation. AIM 2) Define the contribution of the TET activation to MYC-driven lymphomagenesis AIM 3) Characterize the MYC- driven map of 5hmC marks and super-enhancer activation in B cell lymphoma. The proposed study is significant because it will define, and mechanistically elucidate, a novel role for MYC in cancer, i.e., activation of oncogenic enhancers/super-enhancers. Downstream to MYC, the contribution of D2HGDH-L2HGDH (via αKG generation) and O-GlucNAcylation will impart a post-translational control of TET function, which challenges the current dogma that these enzymes function exclusively as tumor suppressors.
TET DNA羟化酶是α-酮戊二酸(αkg)依赖性酶,可催化5MC的氧化 到5-羟基甲基胞嘧啶(5HMC),从而促进DNA脱甲基化。在单个底座上的5hmc标记映射 解决方案表明,TET酶的主要作用是维持基因增强剂降甲基化和 积极的。增强子是转录因子与调节基因表达程序结​​合的基因组领域。 不被转录因子占据的增强子的多动激动簇称为超级 增强剂,通常在癌症中发现。像发起人一样,增强剂/超级增强剂受其监管 DNA甲基化状态,这种过程通常会在癌症中出现问题。鉴于积极的增强剂和超级 增强剂本质上是致癌的,TET酶将其保持降压和活性,我们 假设增加的TET活性本身可能是致癌的。线粒体作为信号细胞器的功能 产生助力表观遗传变化的底物,包括乙酰化和DNA的甲基化 和Histones。最近,我们和其他人描述了线粒体和线粒体之间的微妙相互作用 表观遗传学,其中中间代谢物αkg和2-羟基戊二酸水平被发现为 调节TET酶的活性,从而控制DNA甲基化。这些发现使我们假设 这种中间代谢在控制DNA甲基化中起着重要作用。具体来说,我们 认为线粒体酶D-2-2-和L-2-羟基戊二酸脱氢酶(D2HGDH和 L2HGDH)催化2-Hg至αkg的互转换是不可或缺的 线粒体代谢,TET功能和超增强剂脱甲基化/激活。扩展此初始 概念,我们感觉到识别调节D2HGDH和L2HGDH表达的上游信号,以及 因此,影响TET功能和增强子甲基化/活性。使用记者和芯片分析, 诱导的细胞系和小鼠模型,我们最近报道了MYC转录激活D2HGDH和 L2HGDH,并以D2HGDH/L2HGDH/αkg依赖性方式诱导TET函数导致DNA 体外和体内脱甲基化。值得注意的是,我们发现MYC/D2-L2HGDH/αkg轴也 促进TET1,TET2和TET3的核积累,与O-Glcnacylation增强(A) 通过另一种线粒体酶O-GLCNAC转移酶(OGT)执行的翻译后修饰。 此外,我们初步表明,在扩散的大B细胞淋巴瘤(DLBCL)中,MYC水平与 增强子甲基化和靶基因表达。这些数据一起发现了一种新型的线粒体 信号轴,其中包括近端的MYC,中心的D2/L2HGDH和OGT,然后分开,TET 活动和亚细胞位置。在此提案中,我们将在体外和体内使用人类B细胞淋巴瘤模型 为了测试中间代谢的总体假设,部分是由于MYC活性引起的 功能,维持致癌增强剂/超增强剂低甲基化并活跃并促进癌症。我们的 具体目的是:目标1)确定由O-Glcnacylation增加的机械基础 MYC-D2/L2HGDH-αkg轴及其在促进TET核定位和增强子激活中的作用。目标2) 定义TET激活对MYC驱动的淋巴作用的贡献3) B细胞淋巴瘤中5HMC标记和超增强剂激活的驱动图。拟议的研究很重要 因为它将定义并机械阐明MYC在癌症中的新作用,即致癌性激活 增强剂/超级增强剂。下游对MYC,D2HGDH-L2HGDH的贡献(通过αkg产生) O-Glucnacylation将赋予TET功能的翻译后控制,这挑战了当前 这些酶仅充当肿瘤补充剂的教条。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ricardo C Aguiar其他文献

Ricardo C Aguiar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ricardo C Aguiar', 18)}}的其他基金

Mitochondrial 2-hydroxyglutarate dehydrogenases modulate the cellular epitranscriptome
线粒体 2-羟基戊二酸脱氢酶调节细胞表观转录组
  • 批准号:
    10322194
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Mitochondrial 2-hydroxyglutarate dehydrogenases modulate the cellular epitranscriptome
线粒体 2-羟基戊二酸脱氢酶调节细胞表观转录组
  • 批准号:
    10117575
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Mitochondrial 2-hydroxyglutarate dehydrogenases modulate the cellular epitranscriptome
线粒体 2-羟基戊二酸脱氢酶调节细胞表观转录组
  • 批准号:
    10541234
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Oxidative stress and RNA methylation
氧化应激和 RNA 甲基化
  • 批准号:
    10330584
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Oxidative stress and RNA methylation
氧化应激和 RNA 甲基化
  • 批准号:
    10569629
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
IRF8 and lymphomagenesis
IRF8 和淋巴瘤发生
  • 批准号:
    9898227
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
Post-Translational Control of TET Function in Lymphoma
淋巴瘤 TET 功能的翻译后控制
  • 批准号:
    10512054
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
Non-coding RNAs at the interface of aberrant NF-kB signals and lymphomagenesis
异常 NF-kB 信号与淋巴瘤发生界面的非编码 RNA
  • 批准号:
    8974297
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
IRF8 and lymphomagenesis
IRF8 和淋巴瘤发生
  • 批准号:
    9235548
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
Non-coding RNAs at the interface of aberrant NF-kB signals and lymphomagenesis
异常 NF-kB 信号与淋巴瘤发生界面的非编码 RNA
  • 批准号:
    8436704
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

尖孢镰刀菌蛋白激酶FolGSK3乙酰化修饰调控其致病力的机制研究
  • 批准号:
    32370201
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
去乙酰化酶HDAC6调控角膜上皮发育的分子机制
  • 批准号:
    32300694
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
去乙酰化酶SIRT1抑制干眼角膜上皮细胞铁死亡作用及机制研究
  • 批准号:
    82301183
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
丁酸上调HSD11b2乙酰化抑制HPA轴激活改善孤独症样社交障碍机制研究
  • 批准号:
    82372559
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
Sirt7靶向LC3蛋白去乙酰化增强自噬在癌性心脏损伤中的作用及机制的研究
  • 批准号:
    82303927
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

In vivo tracing of hepatic ethanol metabolism to histone acetylation: role of ACSS2 in alcohol-induced liver injury
肝脏乙醇代谢与组蛋白乙酰化的体内追踪:ACSS2 在酒精性肝损伤中的作用
  • 批准号:
    10667952
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Metabolic Control of Proliferation and Differentiation in Oligodendrocytes
少突胶质细胞增殖和分化的代谢控制
  • 批准号:
    10315354
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Metabolic Control of Proliferation and Differentiation in Oligodendrocytes
少突胶质细胞增殖和分化的代谢控制
  • 批准号:
    10453440
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Metabolic rewiring regulates cancer growth and tumor-associated immune responses
代谢重组调节癌症生长和肿瘤相关免疫反应
  • 批准号:
    10088423
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Metabolic rewiring regulates cancer growth and tumor-associated immune responses
代谢重组调节癌症生长和肿瘤相关免疫反应
  • 批准号:
    10556436
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了