Oxidative stress and RNA methylation
氧化应激和 RNA 甲基化
基本信息
- 批准号:10330584
- 负责人:
- 金额:$ 38.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-14 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:Abnormal CellAddressAgreementAlcohol consumptionAntioxidantsAutoimmunityB-Cell LymphomasB-LymphocytesBenignBiological ProcessChemicalsClinicalClinical ResearchClustered Regularly Interspaced Short Palindromic RepeatsComplexConsumptionDNADataDiabetes MellitusDioxygenasesDiseaseEmbryonic DevelopmentEnvironmental ExposureEnvironmental Risk FactorEnzymesEthanolEventExcisionFree RadicalsGene ExpressionGene Expression ProfileGenetic ModelsGrowthHomeostasisHumanHypermethylationImpairmentIn VitroIsocitrate DehydrogenaseKnowledgeLeadLinkMalignant - descriptorMalignant NeoplasmsMediatingMetabolismMethyltransferaseMitochondriaMixed Function OxygenasesModelingModificationNerve DegenerationNon-MalignantObesityOncogenicOxidation-ReductionOxidative StressOxidoreductasePathogenicityPhysiologicalPhysiological ProcessesPlayPoisonPropertyRNARNA methylationRadiationReactive Oxygen SpeciesRecurrenceReportingRoleSecondary toSignal PathwaySignal TransductionSupplementationSystemTestingTransducersUltraviolet RaysUntranslated RNAWorkalpha ketoglutaratebasecancer cellcigarette smokingdemethylationepitranscriptomeexposed human populationhistone demethylasehuman diseasein vitro Modelin vivoinhibitormitochondrial metabolismmouse modelmutantnovelpollutantstem cell functiontranscriptome
项目摘要
N6-methyladenosine (m6A) is a prevalent chemical modification of RNA that influences gene expression and
cell signaling. The levels of m6A are dynamically regulated by a RNA methyltransferase complex and by the
alpha-ketoglutarate (αKG)-dependent RNA demethylases, FTO and ALKBH5. Misregulated RNA methylation,
and its attendant effects on the epitranscriptome, has been associated with a host of human diseases,
including obesity/diabetes, auto-immunity, neurodegeneration and cancer. Notably, these conditions can all
develop in association with environmental factors that influence oxidative stress, e.g., atmospheric pollutants,
cigarette smoking, ultraviolet rays, radiation, toxic chemicals, etc., but the putative influence of redox
homeostasis on RNA methylation is unknown. To start to address this knowledge gap, we first considered that
the activity of the m6A “erasers” FTO and ALKBH5 rely on intact intermediary metabolism, a point that we
illustrated with the discovery that accumulation of D-2-hydroxyglurate (D-2-HG) in IDH1/2 mutant cancers
inhibits FTO/ALKBH5 and elevates m6A levels. We expanded on these data by showing that loss of D2- or L2-
hydroxyglutarate dehydrogenase (D2HGDH, L2HGDH), which convert D- or L-2-HG into αKG, also suppress
FTO/ALKBH5 activity and promotes RNA hypermethylation. Importantly, work from our group and others have
uncovered a marked interplay between cellular accumulation of 2-HG, intermediary metabolism and redox
homeostasis. These observations led us to speculate that high levels of reactive oxygen species (ROS) may
broadly regulate the epitranscriptome. To start to test this concept, we exposed human B cells (normal and
malignant) to physiologically relevant levels of H202 and ethanol and detected a marked increase in m6A
levels. Using CRISPR KO models of FTO and ALKBH5, we preliminarily confirmed our hypothesis that ROS
modify RNA methylation by inhibiting the activity of RNA demethylases. Notably, D2HGDH and L2HGDH are
NAD+-dependent enzymes, and since ROS elevation consumes NAD+, it is possible that suppression of
D2HGDH/L2HGDH play a part in the cross-talk between redox homeostasis and RNA methylation. Here, we
will use genetic models in vitro an in vivo to test the overall hypothesis that oxidative stress-mediated
disruption of intermediary metabolism modifies the epitranscriptome. More specifically, we postulate that NAD+
consumption secondary to oxidative stress impairs the activity of D2HGDH and L2HGDH, disrupts 2-HG/αKG
homeostasis, thus inhibiting FTO/ALKBH5 activity and promoting RNA hypermethylation. In aim 1, we will
mechanistically explain how ROS inhibits FTO/ALKBH5 activity and test if NAD+-modulating agents can correct
the RNA hypermethylation associated with oxidative stress. In aim 2, using a novel compound mouse model of
B-cell lymphoma, we will test the concept that suppression of RNA demethylases is integral to the oncogenic
role of ROS. In aim 3, we will define the ROS-driven methylRNA/gene expression signatures and identify the
signaling pathways that are deregulated at the intersection of redox imbalance and the epitranscriptome.
N6-甲基腺苷(M6A)是一种普遍存在的RNA化学修饰,它影响基因表达和
细胞信号。M6A的水平受RNA甲基转移酶复合体和
α-酮戊二酸(α-KG)依赖的核糖核糖核酸去甲基酶。错误调控的RNA甲基化,
及其对表位转录组的影响,与许多人类疾病有关,
包括肥胖/糖尿病、自身免疫、神经变性和癌症。值得注意的是,这些条件都可以
与影响氧化应激的环境因素有关,例如大气污染物,
吸烟、紫外线、辐射、有毒化学物质等,但氧化还原的可能影响
RNA甲基化的动态平衡尚不清楚。为了开始解决这个知识鸿沟,我们首先考虑到
M6A“橡皮擦”FTO和ALKBH5的活性依赖于完整的中间代谢,这一点我们
发现IDH1/2突变癌中D-2-羟基葡萄糖酸盐(D-2-HG)的积聚
抑制FTO/ALKBH5,升高m6A水平。我们通过显示D2-或L2-的丢失来扩展这些数据
将D-或L-2-HG转化为αKG的羟基戊二酸脱氢酶(D2HGDH,L2HGDH)也受到抑制
FTO/ALKBH5活性,并促进RNA超甲基化。重要的是,我们小组和其他人的工作
发现细胞中2-羟色胺的积累、中间代谢和氧化还原之间存在显著的相互作用
动态平衡。这些观察结果使我们推测,高水平的活性氧物种(ROS)可能
广泛地规范表位翻译组。为了开始测试这一概念,我们暴露了人类B细胞(正常和
恶性)到H202和乙醇的生理相关水平,并检测到m6A显著增加
级别。利用FTO和ALKBH5的CRISPR KO模型,初步证实了我们的假设
通过抑制RNA去甲基酶的活性来修饰RNA甲基化。值得注意的是,D2HGDH和L2HGDH是
NAD+依赖的酶,由于ROS升高消耗NAD+,因此有可能抑制
D2HGDH/L2HGDH在氧化还原动态平衡和RNA甲基化之间的串扰中发挥了作用。在这里,我们
将使用体外和体内的遗传模型来检验氧化应激介导的总体假设
中间代谢的中断会改变表位转录组。更具体地说,我们假设NAD+
氧化应激继发消费损害D2HGDH和L2HGDH活性,扰乱2-HG/αKG
动态平衡,从而抑制FTO/ALKBH5活性,促进RNA超甲基化。在目标1中,我们将
从机制上解释ROS如何抑制FTO/ALKBH5活性,并测试NAD+调节剂是否能纠正
与氧化应激相关的RNA超甲基化。在目标2中,使用了一种新的复合小鼠模型
B细胞淋巴瘤,我们将测试抑制RNA去甲基酶是致癌过程中不可或缺的概念
ROS的角色。在目标3中,我们将定义ROS驱动的甲基RNA/基因表达特征,并确定
氧化还原失衡和表位转录组交叉处的信号通路被解除调控。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo C Aguiar其他文献
Ricardo C Aguiar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo C Aguiar', 18)}}的其他基金
Mitochondrial 2-hydroxyglutarate dehydrogenases modulate the cellular epitranscriptome
线粒体 2-羟基戊二酸脱氢酶调节细胞表观转录组
- 批准号:
10322194 - 财政年份:2021
- 资助金额:
$ 38.75万 - 项目类别:
Mitochondrial 2-hydroxyglutarate dehydrogenases modulate the cellular epitranscriptome
线粒体 2-羟基戊二酸脱氢酶调节细胞表观转录组
- 批准号:
10117575 - 财政年份:2021
- 资助金额:
$ 38.75万 - 项目类别:
Mitochondrial 2-hydroxyglutarate dehydrogenases modulate the cellular epitranscriptome
线粒体 2-羟基戊二酸脱氢酶调节细胞表观转录组
- 批准号:
10541234 - 财政年份:2021
- 资助金额:
$ 38.75万 - 项目类别:
Post-Translational Control of TET Function in Lymphoma
淋巴瘤 TET 功能的翻译后控制
- 批准号:
10251482 - 财政年份:2013
- 资助金额:
$ 38.75万 - 项目类别:
Post-Translational Control of TET Function in Lymphoma
淋巴瘤 TET 功能的翻译后控制
- 批准号:
10512054 - 财政年份:2013
- 资助金额:
$ 38.75万 - 项目类别:
Non-coding RNAs at the interface of aberrant NF-kB signals and lymphomagenesis
异常 NF-kB 信号与淋巴瘤发生界面的非编码 RNA
- 批准号:
8974297 - 财政年份:2013
- 资助金额:
$ 38.75万 - 项目类别:
Non-coding RNAs at the interface of aberrant NF-kB signals and lymphomagenesis
异常 NF-kB 信号与淋巴瘤发生界面的非编码 RNA
- 批准号:
8436704 - 财政年份:2013
- 资助金额:
$ 38.75万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Research Grant














{{item.name}}会员




