Oxidative stress and RNA methylation

氧化应激和 RNA 甲基化

基本信息

项目摘要

N6-methyladenosine (m6A) is a prevalent chemical modification of RNA that influences gene expression and cell signaling. The levels of m6A are dynamically regulated by a RNA methyltransferase complex and by the alpha-ketoglutarate (αKG)-dependent RNA demethylases, FTO and ALKBH5. Misregulated RNA methylation, and its attendant effects on the epitranscriptome, has been associated with a host of human diseases, including obesity/diabetes, auto-immunity, neurodegeneration and cancer. Notably, these conditions can all develop in association with environmental factors that influence oxidative stress, e.g., atmospheric pollutants, cigarette smoking, ultraviolet rays, radiation, toxic chemicals, etc., but the putative influence of redox homeostasis on RNA methylation is unknown. To start to address this knowledge gap, we first considered that the activity of the m6A “erasers” FTO and ALKBH5 rely on intact intermediary metabolism, a point that we illustrated with the discovery that accumulation of D-2-hydroxyglurate (D-2-HG) in IDH1/2 mutant cancers inhibits FTO/ALKBH5 and elevates m6A levels. We expanded on these data by showing that loss of D2- or L2- hydroxyglutarate dehydrogenase (D2HGDH, L2HGDH), which convert D- or L-2-HG into αKG, also suppress FTO/ALKBH5 activity and promotes RNA hypermethylation. Importantly, work from our group and others have uncovered a marked interplay between cellular accumulation of 2-HG, intermediary metabolism and redox homeostasis. These observations led us to speculate that high levels of reactive oxygen species (ROS) may broadly regulate the epitranscriptome. To start to test this concept, we exposed human B cells (normal and malignant) to physiologically relevant levels of H202 and ethanol and detected a marked increase in m6A levels. Using CRISPR KO models of FTO and ALKBH5, we preliminarily confirmed our hypothesis that ROS modify RNA methylation by inhibiting the activity of RNA demethylases. Notably, D2HGDH and L2HGDH are NAD+-dependent enzymes, and since ROS elevation consumes NAD+, it is possible that suppression of D2HGDH/L2HGDH play a part in the cross-talk between redox homeostasis and RNA methylation. Here, we will use genetic models in vitro an in vivo to test the overall hypothesis that oxidative stress-mediated disruption of intermediary metabolism modifies the epitranscriptome. More specifically, we postulate that NAD+ consumption secondary to oxidative stress impairs the activity of D2HGDH and L2HGDH, disrupts 2-HG/αKG homeostasis, thus inhibiting FTO/ALKBH5 activity and promoting RNA hypermethylation. In aim 1, we will mechanistically explain how ROS inhibits FTO/ALKBH5 activity and test if NAD+-modulating agents can correct the RNA hypermethylation associated with oxidative stress. In aim 2, using a novel compound mouse model of B-cell lymphoma, we will test the concept that suppression of RNA demethylases is integral to the oncogenic role of ROS. In aim 3, we will define the ROS-driven methylRNA/gene expression signatures and identify the signaling pathways that are deregulated at the intersection of redox imbalance and the epitranscriptome.
N6-甲基腺苷(m6 A)是一种普遍的RNA化学修饰,影响基因表达, 细胞信号m6 A的水平受RNA甲基转移酶复合物和DNA甲基转移酶的动态调节。 α-酮戊二酸(αKG)依赖性RNA脱甲基酶、FTO和ALKBH 5。RNA甲基化失调, 以及其对表转录组的伴随作用,与许多人类疾病有关, 包括肥胖/糖尿病、自身免疫、神经变性和癌症。值得注意的是,这些条件都可以 与影响氧化应激的环境因素有关,例如,大气污染物, 吸烟、紫外线、辐射、有毒化学物质等,但氧化还原的影响 RNA甲基化的稳态是未知的。为了开始解决这一知识差距,我们首先考虑, m6 A“擦除器”FTO和ALKBH 5的活性依赖于完整的中间代谢,这一点我们认为, 发现IDH 1/2突变型癌症中D-2-羟基谷氨酸(D-2-HG)的积累 抑制FTO/ALKBH 5并升高m6 A水平。我们扩展了这些数据,显示D2-或L2- 将D-或L-2-HG转化为αKG的羟基戊二酸脱氢酶(D2 HGDH,L2 HGDH)也抑制 FTO/ALKBH 5活性并促进RNA超甲基化。重要的是,我们团队和其他人的工作 揭示了2-HG的细胞积累,中间代谢和氧化还原之间的显着相互作用 体内平衡这些观察使我们推测,高水平的活性氧(ROS)可能 广泛地调节着表转录组。为了开始测试这一概念,我们将人类B细胞(正常和 恶性)的H2 O2和乙醇的生理相关水平,并检测到m6 A 程度.使用FTO和ALKBH 5的CRISPR KO模型,我们初步证实了我们的假设,ROS 通过抑制RNA去甲基化酶的活性来修饰RNA甲基化。值得注意的是,D2 HGDH和L2 HGDH是 NAD+依赖性酶,并且由于ROS升高消耗NAD+,因此抑制NAD+是可能的。 D2 HGDH/L2 HGDH在氧化还原稳态和RNA甲基化之间的相互作用中发挥作用。这里我们 将在体外和体内使用遗传模型来测试氧化应激介导的 中间代谢的破坏改变了表转录组。更具体地说,我们假设NAD+ 继发于氧化应激的消耗损害D2 HGDH和L2 HGDH的活性,破坏2-HG/αKG 体内平衡,从而抑制FTO/ALKBH 5活性并促进RNA超甲基化。在目标1中, 机械地解释ROS如何抑制FTO/ALKBH 5活性,并测试NAD+调节剂是否可以纠正 与氧化应激相关的RNA超甲基化。在aim 2中,使用一种新的复合小鼠模型, B细胞淋巴瘤,我们将测试的概念,抑制RNA去甲基化酶是不可或缺的致癌基因, ROS的作用。在目标3中,我们将定义ROS驱动的甲基RNA/基因表达特征,并识别 在氧化还原不平衡和表转录组的交叉点被解除调节的信号传导途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ricardo C Aguiar其他文献

Ricardo C Aguiar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ricardo C Aguiar', 18)}}的其他基金

Mitochondrial 2-hydroxyglutarate dehydrogenases modulate the cellular epitranscriptome
线粒体 2-羟基戊二酸脱氢酶调节细胞表观转录组
  • 批准号:
    10322194
  • 财政年份:
    2021
  • 资助金额:
    $ 38.75万
  • 项目类别:
Mitochondrial 2-hydroxyglutarate dehydrogenases modulate the cellular epitranscriptome
线粒体 2-羟基戊二酸脱氢酶调节细胞表观转录组
  • 批准号:
    10117575
  • 财政年份:
    2021
  • 资助金额:
    $ 38.75万
  • 项目类别:
Mitochondrial 2-hydroxyglutarate dehydrogenases modulate the cellular epitranscriptome
线粒体 2-羟基戊二酸脱氢酶调节细胞表观转录组
  • 批准号:
    10541234
  • 财政年份:
    2021
  • 资助金额:
    $ 38.75万
  • 项目类别:
Oxidative stress and RNA methylation
氧化应激和 RNA 甲基化
  • 批准号:
    10330584
  • 财政年份:
    2020
  • 资助金额:
    $ 38.75万
  • 项目类别:
Post-Translational Control of TET Function in Lymphoma
淋巴瘤 TET 功能的翻译后控制
  • 批准号:
    10251482
  • 财政年份:
    2013
  • 资助金额:
    $ 38.75万
  • 项目类别:
IRF8 and lymphomagenesis
IRF8 和淋巴瘤发生
  • 批准号:
    9898227
  • 财政年份:
    2013
  • 资助金额:
    $ 38.75万
  • 项目类别:
Post-Translational Control of TET Function in Lymphoma
淋巴瘤 TET 功能的翻译后控制
  • 批准号:
    10512054
  • 财政年份:
    2013
  • 资助金额:
    $ 38.75万
  • 项目类别:
Non-coding RNAs at the interface of aberrant NF-kB signals and lymphomagenesis
异常 NF-kB 信号与淋巴瘤发生界面的非编码 RNA
  • 批准号:
    8974297
  • 财政年份:
    2013
  • 资助金额:
    $ 38.75万
  • 项目类别:
IRF8 and lymphomagenesis
IRF8 和淋巴瘤发生
  • 批准号:
    9235548
  • 财政年份:
    2013
  • 资助金额:
    $ 38.75万
  • 项目类别:
Non-coding RNAs at the interface of aberrant NF-kB signals and lymphomagenesis
异常 NF-kB 信号与淋巴瘤发生界面的非编码 RNA
  • 批准号:
    8436704
  • 财政年份:
    2013
  • 资助金额:
    $ 38.75万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 38.75万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 38.75万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.75万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了