Predictive Analytics for Retention in HIV Care

HIV 护理保留的预测分析

基本信息

  • 批准号:
    10219108
  • 负责人:
  • 金额:
    $ 18.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Retention in care is essential to HIV treatment and prevention, yet less than half of people living with HIV in the U.S. are retained in medical care. Effective retention interventions, such as intensive case management and patient navigation, are highly resource intensive. With diminishing resources for HIV care, better approaches are needed to identify patients at highest risk for retention failure who would most benefit from retention resources. A predictive model may quantify a specific patient's risk of future retention-in-care failure based on his/her unique characteristics. Such a predictive model based on electronic health data and supplemental social factor informed data could be automated to generate risk prediction in real time. Instead of attempting to locate and re-engage patients who are “lost to follow-up” as is the current practice, a predictive model would allow case managers to identify at risk clients and intervene to prevent retention failure before it occurs. I have a strong background in clinical informatics, biostatistics, and epidemiology. Through this K23, I will further develop my skills in longitudinal data analysis and advanced data analytics and create a predictive model of retention in care. In Aim 1, I will create a predictive model of retention in care using EHR data from a large clinical data research network spanning 11 healthcare systems in Chicago, utilizing mixed effects logistic regression and random forest. Through Aim 2, I will evaluate whether the addition of supplemental social factor informed electronic data sources into the predictive model enhances its performance (e.g., unstructured text of EHR notes, geospatial data, social media data). Finally, in Aim 3, I will explore the feasibility of using the model in real time to increase retention efforts for at-risk patients. I will complete this project under the supervision of my mentor (Dr. John Schneider), co-mentor (Dr. David Meltzer), and my advisory team (Dr. Robert Gibbons, Rayid Ghani, and Dr. C. Hendricks Brown). Together, this multidisciplinary team brings nationally renowned expertise in HIV research, EHR research, longitudinal data analysis, natural language processing, social media data, implementation science, and ethics. In addition, they serve as Directors of the Chicago Center for HIV Elimination (Schneider), Center for Health and the Social Sciences (Meltzer), Center for Data Science and Public Policy (Ghani), Center for Health Statistics (Gibbons), and Center for Prevention Implementation Methodology for Drug Abuse and HIV (Brown). An integrated program of coursework, seminars, structured mentorship, research activities, and conferences will provide me with the skills necessary to complete the proposed research and transition to independence. My long-term career goal is to become an independent investigator utilizing HIV informatics to develop prediction models and tools to inform HIV prevention and treatment across the HIV care continuum. The mentorship and training that I will receive through this K23 award will provide me with the foundation necessary to pursue that goal and this proposal will form the basis for future R01 proposals.
继续接受护理对艾滋病毒治疗和预防至关重要,但在2010年, 美国在医疗护理中被保留。有效的保留干预措施,如强化案例管理, 患者导航是高度资源密集型的。随着艾滋病毒护理资源的减少, 需要确定保留失败风险最高的患者,他们将从保留中获益最多 资源预测模型可以基于以下因素来量化特定患者未来保留护理失败的风险: 他/她独特的特征。这样的预测模型基于电子健康数据和补充的 社会因素通知数据可以被自动化以真实的时间生成风险预测。而不是试图 定位和重新参与“失访”的患者,如目前的做法,预测模型将 允许个案管理员识别有风险的客户并进行干预,以在客户流失发生之前防止其流失。 我在临床信息学、生物统计学和流行病学方面有很强的背景。通过K23,我将 进一步发展我在纵向数据分析和高级数据分析方面的技能, 保持护理的模式。在目标1中,我将使用EHR数据创建一个护理保留的预测模型, 一个大型临床数据研究网络,跨越芝加哥的11个医疗保健系统,利用混合效应逻辑 回归和随机森林。通过目标2,我将评估是否增加了补充社会因素 通知的电子数据源进入预测模型增强了其性能(例如,非结构化文本 电子健康记录、地理空间数据、社交媒体数据)。最后,在目标3中,我将探讨使用该模型的可行性 在真实的时间,以增加保留的努力,为高危患者。 我将在我的导师(约翰施耐德博士),共同导师(大卫博士)的监督下完成这个项目 Meltzer)和我的顾问团队(Robert Gibbons博士、Rayid Ghani和C. Hendricks Brown)。我们一起努力, 这个多学科团队带来了全国知名的艾滋病毒研究,EHR研究,纵向 数据分析、自然语言处理、社交媒体数据、实施科学和伦理。此外,本发明还提供了一种方法, 他们担任芝加哥艾滋病毒消除中心(施耐德),健康和社会中心 科学(梅尔泽),数据科学和公共政策中心(加尼),卫生统计中心(吉本斯), 和药物滥用和艾滋病毒预防实施方法中心(布朗)。集成 课程计划,研讨会,结构化的导师,研究活动,和会议将为我提供 具有完成拟议研究和过渡到独立所需的技能。我的长期 我的职业目标是成为一名独立的研究人员,利用艾滋病毒信息学开发预测模型 和工具,为整个艾滋病毒护理过程中的艾滋病毒预防和治疗提供信息。指导和培训 我将通过这个K23奖获得的奖励将为我提供实现这一目标所必需的基础, 该提案将构成未来R 01提案的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jessica Ridgway其他文献

Jessica Ridgway的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jessica Ridgway', 18)}}的其他基金

Predictive Analytics for Retention in HIV Care
HIV 护理保留的预测分析
  • 批准号:
    10841315
  • 财政年份:
    2019
  • 资助金额:
    $ 18.49万
  • 项目类别:
Predictive Analytics for Retention in HIV Care
HIV 护理保留的预测分析
  • 批准号:
    10460606
  • 财政年份:
    2019
  • 资助金额:
    $ 18.49万
  • 项目类别:
Predictive Analytics for Retention in HIV Care
HIV 护理保留的预测分析
  • 批准号:
    9982442
  • 财政年份:
    2019
  • 资助金额:
    $ 18.49万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.49万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了