Predictive Analytics for Retention in HIV Care
HIV 护理保留的预测分析
基本信息
- 批准号:10841315
- 负责人:
- 金额:$ 7.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AIDS preventionAdvisory CommitteesBiometryCaringCase ManagementCase ManagerCharacteristicsChicagoClientClinical DataClinical InformaticsContinuity of Patient CareDataData AnalysesData AnalyticsData ScienceData SourcesDrug abuseEHR researchElectronic Health RecordEpidemiologyEthicsFailureFoundationsFutureGoalsHIVHealthHealthcare SystemsHylobates GenusIndividualInformaticsInterventionLogistic RegressionsMedicalMentored Patient-Oriented Research Career Development AwardMentorsMentorshipMethodologyModelingNatural Language ProcessingPatient riskPatientsPerformancePersonsPredictive AnalyticsPreventionPublic PolicyResearchResearch ActivityResearch PersonnelResourcesRiskRisk FactorsScience PolicySocial SciencesStructureSupervisionTextTimeTrainingUnited Statescareerelectronic dataelectronic health datafollow-uphigh riskimplementation sciencemultidisciplinarypatient engagementpatient navigationpredictive modelingpredictive toolspreventprogramsrandom forestrisk predictionskillssocial factorssocial mediastatisticssymposium
项目摘要
Project Summary
Retention in care is essential to HIV treatment and prevention, yet less than half of people living with HIV in the
U.S. are retained in medical care. Effective retention interventions, such as intensive case management and
patient navigation, are highly resource intensive. With diminishing resources for HIV care, better approaches
are needed to identify patients at highest risk for retention failure who would most benefit from retention
resources. A predictive model may quantify a specific patient’s risk of future retention-in-care failure based on
his/her unique characteristics. Such a predictive model based on electronic health data and supplemental
social factor informed data could be automated to generate risk prediction in real time. Instead of attempting to
locate and re-engage patients who are “lost to follow-up” as is the current practice, a predictive model would
allow case managers to identify at risk clients and intervene to prevent retention failure before it occurs.
I have a strong background in clinical informatics, biostatistics, and epidemiology. Through this K23, I will
further develop my skills in longitudinal data analysis and advanced data analytics and create a predictive
model of retention in care. In Aim 1, I will create a predictive model of retention in care using EHR data from a
large clinical data research network spanning 11 healthcare systems in Chicago, utilizing mixed effects logistic
regression and random forest. Through Aim 2, I will evaluate whether the addition of supplemental social factor
informed electronic data sources into the predictive model enhances its performance (e.g., unstructured text of
EHR notes, geospatial data, social media data). Finally, in Aim 3, I will explore the feasibility of using the model
in real time to increase retention efforts for at-risk patients.
I will complete this project under the supervision of my mentor (Dr. John Schneider), co-mentor (Dr. David
Meltzer), and my advisory team (Dr. Robert Gibbons, Rayid Ghani, and Dr. C. Hendricks Brown). Together,
this multidisciplinary team brings nationally renowned expertise in HIV research, EHR research, longitudinal
data analysis, natural language processing, social media data, implementation science, and ethics. In addition,
they serve as Directors of the Chicago Center for HIV Elimination (Schneider), Center for Health and the Social
Sciences (Meltzer), Center for Data Science and Public Policy (Ghani), Center for Health Statistics (Gibbons),
and Center for Prevention Implementation Methodology for Drug Abuse and HIV (Brown). An integrated
program of coursework, seminars, structured mentorship, research activities, and conferences will provide me
with the skills necessary to complete the proposed research and transition to independence. My long-term
career goal is to become an independent investigator utilizing HIV informatics to develop prediction models
and tools to inform HIV prevention and treatment across the HIV care continuum. The mentorship and training
that I will receive through this K23 award will provide me with the foundation necessary to pursue that goal and
this proposal will form the basis for future R01 proposals.
项目摘要
继续接受护理对艾滋病毒治疗和预防至关重要,但在2010年,
美国保留在医疗护理中。有效的保留干预措施,如强化案例管理,
患者导航是高度资源密集型的。随着艾滋病毒护理资源的减少,
需要确定保留失败风险最高的患者,他们将从保留中获益最多
资源预测模型可以基于以下因素来量化特定患者未来保留护理失败的风险:
他/她独特的特征。这样的预测模型基于电子健康数据和补充的
社会因素通知数据可以被自动化以真实的时间生成风险预测。而不是试图
定位和重新参与“失访”的患者,如目前的做法,预测模型将
允许个案管理员识别有风险的客户并进行干预,以在客户流失发生之前防止其流失。
我在临床信息学、生物统计学和流行病学方面有很强的背景。通过K23,我将
进一步发展我在纵向数据分析和高级数据分析方面的技能,
保持护理的模式。在目标1中,我将使用EHR数据创建一个护理保留的预测模型,
一个大型临床数据研究网络,跨越芝加哥的11个医疗保健系统,利用混合效应逻辑
回归和随机森林。通过目标2,我将评估是否增加了补充社会因素
通知的电子数据源进入预测模型增强了其性能(例如,非结构化文本
电子健康记录、地理空间数据、社交媒体数据)。最后,在目标3中,我将探讨使用该模型的可行性
在真实的时间,以增加保留的努力,为高危患者。
我将在我的导师(约翰施耐德博士),共同导师(大卫博士)的监督下完成这个项目
Meltzer)和我的顾问团队(Robert Gibbons博士、Rayid Ghani和C. Hendricks Brown)。在一起,
这个多学科团队带来了全国知名的艾滋病毒研究,EHR研究,纵向
数据分析、自然语言处理、社交媒体数据、实施科学和道德。此外,本发明还提供了一种方法,
他们担任芝加哥艾滋病毒消除中心(施耐德),健康和社会中心
科学(梅尔泽),数据科学和公共政策中心(加尼),卫生统计中心(吉本斯),
和药物滥用和艾滋病毒预防实施方法中心(布朗)。集成
课程计划,研讨会,结构化的导师,研究活动,和会议将为我提供
具有完成拟议研究和过渡到独立所需的技能。我的长期
我的职业目标是成为一名独立的研究人员,利用艾滋病毒信息学开发预测模型
和工具,为整个艾滋病毒护理过程中的艾滋病毒预防和治疗提供信息。指导和培训
我将通过这个K23奖获得的奖励将为我提供实现这一目标所必需的基础,
该提案将构成未来R 01提案的基础。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measuring Retention in HIV Care in the First Year of the COVID-19 Pandemic: The Impact of Telehealth.
- DOI:10.1007/s10461-022-03875-3
- 发表时间:2023-05
- 期刊:
- 影响因子:4.4
- 作者:Ridgway JP;Massey R;Mason JA;Devlin S;Friedman EE
- 通讯作者:Friedman EE
No-show Prediction Model Performance Among People With HIV: External Validation Study.
- DOI:10.2196/43277
- 发表时间:2023-03-29
- 期刊:
- 影响因子:7.4
- 作者:Mason, Joseph A.;Friedman, Eleanor E.;Rojas, Juan C.;Ridgway, Jessica P.
- 通讯作者:Ridgway, Jessica P.
Impact of mail order pharmacy use and travel time to pharmacy on viral suppression among people living with HIV.
- DOI:10.1080/09540121.2020.1757019
- 发表时间:2020-11
- 期刊:
- 影响因子:1.7
- 作者:Ridgway JP;Friedman EE;Choe J;Nguyen CT;Schuble T;Pettit NN
- 通讯作者:Pettit NN
Comparison of algorithms for identifying people with HIV from electronic medical records in a large, multi-site database.
- DOI:10.1093/jamiaopen/ooac033
- 发表时间:2022-07
- 期刊:
- 影响因子:2.1
- 作者:Ridgway, Jessica P.;Mason, Joseph A.;Friedman, Eleanor E.;Devlin, Samantha;Zhou, Junlan;Meltzer, David;Schneider, John
- 通讯作者:Schneider, John
Predictive Modeling of Lapses in Care for People Living with HIV in Chicago: Algorithm Development and Interpretation.
- DOI:10.2196/43017
- 发表时间:2023-05-17
- 期刊:
- 影响因子:8.5
- 作者:Mason, Joseph A.;Friedman, Eleanor E.;Devlin, Samantha A.;Schneider, John A.;Ridgway, Jessica P.
- 通讯作者:Ridgway, Jessica P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Ridgway其他文献
Jessica Ridgway的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Ridgway', 18)}}的其他基金
相似海外基金
Toward a Political Theory of Bioethics: Participation, Representation, and Deliberation on Federal Bioethics Advisory Committees
迈向生命伦理学的政治理论:联邦生命伦理学咨询委员会的参与、代表和审议
- 批准号:
0451289 - 财政年份:2005
- 资助金额:
$ 7.35万 - 项目类别:
Standard Grant














{{item.name}}会员




