Engineering stem cell therapies to understand and overcome glioblastoma adaption
工程干细胞疗法以了解和克服胶质母细胞瘤适应
基本信息
- 批准号:10218274
- 负责人:
- 金额:$ 31.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-26 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAftercareAnimalsApoptoticAutologousBlood - brain barrier anatomyBrainCellsChemotherapy-Oncologic ProcedureClinicClinicalDiffuseDiseaseDistantDoseDrug CarriersDrug Delivery SystemsEngineeringEventExcisionFailureFibroblastsFutureGenetic EngineeringGenetically Engineered MouseGlioblastomaGoalsGrantHomeHomingHumanImmuneImmune systemImmunocompetentIn VitroInfusion proceduresInjectionsLuciferasesMalignant NeoplasmsMalignant neoplasm of brainMediatingModelingMolecularMusOperative Surgical ProceduresPathway interactionsPatientsPenetrationPharmaceutical PreparationsPharmacotherapyPre-Clinical ModelProcessProliferatingRecurrenceResectedResistanceSeedsSiteSolidSomatic CellSurgically-Created Resection CavityTNFSF10 geneTechnologyTestingTherapeuticTissuesTransplantationTumor Stem CellsVentricularWorkXenograft ModelXenograft procedureanti-canceranticancer activitybasebioluminescence imagingcancer cellcancer invasivenesscell killingcell typeclinically relevantcytotoxicdefined contributionengineered stem cellsgene productimprovedmigrationmouse modelneoplastic cellnerve stem cellnovelpatient derived xenograft modelpreclinical studypreventresponsestem cell deliverystem cell therapytranscription factortransdifferentiationtumortumor behavior
项目摘要
Project Summary/Abstract
Genetically engineered neural stem cells (NSCs) are a promising therapy for the highly aggressive brain
cancer Glioblastoma (GBM). Engineered NSCs have unique tumor-homing capacity that allows them to deliver
anti-cancer gene products directly into local and invasive GBM foci. Preclinical studies by our group and others
have shown tumoricidal NSCs routinely reduce orthotopic GBM xenografts between 70-90% and significantly
extend survival of tumor-bearing mice. Yet, these dramatic initial reductions in GBM volumes are not
maintained and treatment durability remains a major challenge for NSC-based therapy. GBM escape occurs
after treatment with NSCs carrying different therapeutic payloads and in pre-clinical models of both solid and
post-surgical GBM. We recently discovered that novel tumor-homing drug delivery vehicles with robust anti-
cancer activity can be developed from “induced neural stem cells” (iNSCs) using cellular reprogramming
technology, referred to as transdifferentiation (TD). Tumoricidal iNSC therapy reduced GBM xenografts 230-
fold in 4 weeks and more than doubled survival. Similar to wild-type NSC therapy, the tumors were not
eradicated and the GBMs re-developed. The events mediating the regrowth of GBMs in response to single-
agent NSC/iNSC therapy are unknown. Our results show that transplanted iNSCs drug carriers are cleared
from the brain, but repeated intracerebroventricular (ICV) infusion restores carrier levels. We also have
evidence that GBM cells become resistant to iNSC-delivered drugs. This allows us to hypothesize that GBM
resistance to iNSC therapy can be overcome by repeat administration to address carrier loss and multi-agent
iNSC delivery to address tumor resistance. With this grant we propose to test this hypothesis, defining the
events that contribute to the dynamic adaption of GBM during NSC treatment and develop strategies to convert
the initial tumor kill into sustained GBM suppression. We will investigate carrier clearance, homing, and tumor
resistance throughout GBM adaption and recurrence. We will then modulate iNSC therapy through repeated
dosing via ICV infusion and delivery of iNSCs carrying multi-drug payloads with the goal of improving treatment
durability by overcoming iNSC loss and the emergence of GBM foci that are resistant to single-agent
treatments. All testing will be done using our novel surgical resection models of murine-derived GBM cells in
immune-competent animals and patient-derived CD133+ human GBM cells to maximize the clinical relevancy
of our finding and understand the impact of the immune system on iNSC treatment durability. The results of
these studies are essential for creating durable NSC-based tumor therapies capable of producing long-lasting
GBM suppression in patient trials.
项目概要/摘要
基因工程神经干细胞(NSC)是治疗高度攻击性大脑的一种有前途的疗法
癌症胶质母细胞瘤(GBM)。工程化 NSC 具有独特的肿瘤归巢能力,使它们能够传递
抗癌基因产物直接进入局部和侵袭性GBM病灶。我们组和其他人的临床前研究
研究表明,杀肿瘤 NSC 通常可以使原位 GBM 异种移植物减少 70-90%,并且显着减少
延长荷瘤小鼠的生存期。然而,GBM 体积的这些最初急剧减少并没有
维持和治疗持久性仍然是基于 NSC 的治疗的主要挑战。 GBM 逃逸发生
使用携带不同治疗有效负载的 NSC 进行治疗后,以及在实体和实体的临床前模型中
手术后 GBM。我们最近发现了具有强大抗肿瘤作用的新型肿瘤归巢药物递送载体
可以使用细胞重编程从“诱导神经干细胞”(iNSC)开发癌症活性
技术,称为转分化(TD)。杀肿瘤 iNSC 疗法减少 GBM 异种移植物 230-
4 周内折叠,存活率增加一倍以上。与野生型 NSC 疗法类似,肿瘤不
被根除,GBM 重新发育。介导 GBM 再生以响应单因素的事件
NSC/iNSC 治疗剂尚不清楚。我们的结果表明移植的 iNSC 药物载体被清除
来自大脑,但反复脑室内(ICV)输注可恢复载体水平。我们还有
有证据表明 GBM 细胞对 iNSC 递送的药物产生耐药性。这让我们可以假设 GBM
可以通过重复给药来克服对 iNSC 治疗的耐药性,以解决载体丢失和多药治疗的问题
iNSC 递送以解决肿瘤耐药性问题。通过这笔赠款,我们建议检验这一假设,定义
在 NSC 治疗期间有助于 GBM 动态适应的事件并制定转化策略
最初的肿瘤杀死转变为持续的 GBM 抑制。我们将研究载体清除、归巢和肿瘤
整个 GBM 适应和复发过程中的耐药性。然后我们将通过重复调节 iNSC 治疗
通过 ICV 输注和携带多种药物有效负载的 iNSC 进行给药,以改善治疗
通过克服 iNSC 损失和对单一药物具有抵抗力的 GBM 病灶的出现来实现耐久性
治疗。所有测试都将使用我们新型的鼠源性 GBM 细胞手术切除模型来完成
具有免疫能力的动物和患者来源的 CD133+ 人 GBM 细胞,以最大限度地提高临床相关性
我们的发现并了解免疫系统对 iNSC 治疗持久性的影响。结果
这些研究对于创造持久的基于 NSC 的肿瘤疗法至关重要,该疗法能够产生持久的效果
患者试验中的 GBM 抑制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shawn Hingtgen其他文献
Shawn Hingtgen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shawn Hingtgen', 18)}}的其他基金
Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
- 批准号:
10552623 - 财政年份:2022
- 资助金额:
$ 31.84万 - 项目类别:
Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
- 批准号:
10420701 - 财政年份:2022
- 资助金额:
$ 31.84万 - 项目类别:
Engineering stem cell therapies to understand and overcome glioblastoma adaption
工程干细胞疗法以了解和克服胶质母细胞瘤适应
- 批准号:
9447282 - 财政年份:2017
- 资助金额:
$ 31.84万 - 项目类别:
Engineering stem cell therapies to understand and overcome glioblastoma adaption
工程干细胞疗法以了解和克服胶质母细胞瘤适应
- 批准号:
9751410 - 财政年份:2017
- 资助金额:
$ 31.84万 - 项目类别:
Nanofiber matrices to improve neural stem cell-mediated cancer therapy
纳米纤维基质改善神经干细胞介导的癌症治疗
- 批准号:
9282732 - 财政年份:2016
- 资助金额:
$ 31.84万 - 项目类别:
Nanofiber matrices to improve neural stem cell-mediated cancer therapy
纳米纤维基质改善神经干细胞介导的癌症治疗
- 批准号:
9160211 - 财政年份:2016
- 资助金额:
$ 31.84万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 31.84万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 31.84万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 31.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 31.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 31.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




