Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer

利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法

基本信息

  • 批准号:
    10420701
  • 负责人:
  • 金额:
    $ 46.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Glioblastoma is the most common primary brain tumor and one of the deadliest forms of cancer. Recently, we found that biocompatible matrices significantly improve the transplant of tumor-homing neural stem cells into the post-surgical GBM cavity allowing them to deliver anti-cancer gene products that suppress tumor recurrence. Yet, the optimal scaffold figuration that maximizes tNSC transplant, migration, drug release, and subsequent GBM kill remain unknown. Using clinically relevant human tNSCs, matrices, and mouse models of GBM resection/recurrence, we have found that 3D architecture and scaffold composition markedly enhance tNSC persistence in the surgical cavity. Here in, we hypothesize that optimizing features through unique 3D printing of custom designed scaffolds will achieve superior suppression of post-surgical GBMs by tNSC therapy. Leveraging Continuous Liquid Interface Printing (CLIP), a novel continuous fabrication method with high spatial resolution, we propose to fabricate a panel of 3D matrices with different architectural, biophysical, and mechanical response features design rationally selected to improve tNSC therapy. We will define the impact of each design feature on tNSC persistence, homing and killing in vitro and in vivo, then test a final optimized matrix incorporating the most beneficial features into a single matrix using surgical resection models of patient-derived human xenografts in immune-depleted mice and syngeneic GBM allografts in immune- competent animals. We propose to undertake the following Aims: 1) Utilize CLIP to fabricate a panel of 3D printed matrices with varied design features; 2) Define the impact of 3D design features on tNSC efficacy for post-operative GBM; 3) Investigate the efficacy and safety of 3D matrix/tNSC therapy in immune-competent models of GBM resection/recurrence. The results of our study will generate a therapeutic tNSC/scaffold transplant strategy capable of robust GBM killing that can be translated for human patient testing. It will also uncover the scaffold features that regulate different aspects of tNSCs, allowing us to modulate tNSC cancer therapy through matrix design.
项目摘要/摘要 胶质母细胞瘤是最常见的原发脑肿瘤,也是最致命的癌症之一。最近,我们 发现生物相容基质显著改善了肿瘤归巢神经干细胞移植到 手术后的GBM腔允许他们提供抑制肿瘤的抗癌基因产品 复发。然而,最大限度地增加tNSC移植、迁移、药物释放和 随后的GBM杀戮事件仍不得而知。使用临床相关的人类tNSCs、矩阵和小鼠模型 基底膜切除/复发,我们发现3D结构和支架成分明显增强 TNSC在手术腔内持续存在。在这里,我们假设通过独特的3D优化功能 打印定制设计的支架将实现tNSC对手术后GBM的卓越抑制 心理治疗。利用连续液体界面印刷(CLIP),一种新的连续制造方法 高空间分辨率,我们建议制作一个由不同建筑、生物物理、 合理选择机械反应特征设计,提高tNSC治疗效果。我们将定义 每种设计特征在体外和体内对tNSC持久性、归巢和杀伤的影响,然后测试最终的 使用手术切除模型将最有益的特征整合到单个矩阵中的优化矩阵 患者来源的人异种移植在免疫耗竭的小鼠和同基因的GBM异体移植在免疫- 有能力的动物。我们的目标是:1)利用CLIP制作3D面板 具有不同设计特征的打印矩阵;2)定义3D设计特征对tNSC疗效的影响 3)观察3D-Matrix/tNSC治疗免疫功能障碍的疗效和安全性。 基底膜切除/复发模型的建立。我们的研究结果将产生一种治疗性tNSC/支架 移植策略能够强大地杀死GBM,可以翻译成人类患者测试。它还将 揭示调控tNSCs不同方面的支架功能,使我们能够调控tNSC癌症 通过矩阵设计进行治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shawn Hingtgen其他文献

Shawn Hingtgen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shawn Hingtgen', 18)}}的其他基金

Harnessing Continuous Liquid Interface 3D Printing to Improve Tumor-homing Stem Cell Therapy for Post-surgical Brain Cancer
利用连续液体界面 3D 打印改善脑癌术后肿瘤归巢干细胞疗法
  • 批准号:
    10552623
  • 财政年份:
    2022
  • 资助金额:
    $ 46.72万
  • 项目类别:
Engineering stem cell therapies to understand and overcome glioblastoma adaption
工程干细胞疗法以了解和克服胶质母细胞瘤适应
  • 批准号:
    9447282
  • 财政年份:
    2017
  • 资助金额:
    $ 46.72万
  • 项目类别:
Engineering stem cell therapies to understand and overcome glioblastoma adaption
工程干细胞疗法以了解和克服胶质母细胞瘤适应
  • 批准号:
    10218274
  • 财政年份:
    2017
  • 资助金额:
    $ 46.72万
  • 项目类别:
Engineering stem cell therapies to understand and overcome glioblastoma adaption
工程干细胞疗法以了解和克服胶质母细胞瘤适应
  • 批准号:
    9751410
  • 财政年份:
    2017
  • 资助金额:
    $ 46.72万
  • 项目类别:
Nanofiber matrices to improve neural stem cell-mediated cancer therapy
纳米纤维基质改善神经干细胞介导的癌症治疗
  • 批准号:
    9282732
  • 财政年份:
    2016
  • 资助金额:
    $ 46.72万
  • 项目类别:
Nanofiber matrices to improve neural stem cell-mediated cancer therapy
纳米纤维基质改善神经干细胞介导的癌症治疗
  • 批准号:
    9160211
  • 财政年份:
    2016
  • 资助金额:
    $ 46.72万
  • 项目类别:

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    $ 46.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    $ 46.72万
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    $ 46.72万
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 46.72万
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 46.72万
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    $ 46.72万
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    $ 46.72万
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    $ 46.72万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    $ 46.72万
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    $ 46.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了