Improving representativeness in non-probability surveys and causal inference with regularized regression and post-stratification

通过正则化回归和后分层提高非概率调查和因果推断的代表性

基本信息

  • 批准号:
    10219956
  • 负责人:
  • 金额:
    $ 25.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The proposed project has a broad aim of working with the increasing complexities of survey statistics with de- creasing response rate. We focus specifically on non-probability samples (samples of convenience) due to their increasing popularity, but note that these non-probability samples are simply an extreme case of a probability based survey with high non-response, and so our methods could be expected to generalize. Long term, our hope is to find methods and techniques to safely adjust non-probability samples to a wider population whilst concurrently developing methods of critiquing these estimates to increase researcher, policy maker and public confidence in these estimates. Our specific aims focus in on developing the tools and techniques to make this possible. We focus primarily on a regularized regression and poststratification methodology that has already shown some success with non- representative and even convenience samples. Using this methodology, we focus on adaptions that make this technique useful for public health settings. Specifically we focus on a three pronged approach. Firstly, we aim to make adaptions to the current state of the arc of modelling technique to better suit the unique challenges posed by public health datasets and questions. Our approach to achieve this is to focus on partial pooling with more structured adjustment variables, and more broadly considering high dimensional variables with continuous and non-continuous components. Not only that, but we move to also consider uncertainty in poststratification, namely when adjusting for variables not known in the population. In a complementary approach, we also aim to assess coverage by combining raw survey data but assuming differences in sample. Secondly, we note that many our central methodology could be extended to questions of a causal nature. This is particularly relevant to public health challenges because often causal estimates are desired. Our approach is to extend the model based approach to assume heterogeneity of effect within demographic subgroups. Then by using regularization, the effect within each subgroup is estimated and used to poststratify to the population. Groups with relatively few treated/untreated individuals would be estimated with greater uncertainty, which is an innovative approach to accounting for balance. Thirdly and finally we note that the regularized regression and prediction technique is particularly reliant on model assumptions. Our final aim is to consider methods of testing and validating models with non-representative data in order to obtain better and more trustworthy population based estimates.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANDREW GELMAN其他文献

ANDREW GELMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANDREW GELMAN', 18)}}的其他基金

Software development for Stan to improve survey statistics for non-probability samples
Stan 开发软件以改进非概率样本的调查统计
  • 批准号:
    10405924
  • 财政年份:
    2020
  • 资助金额:
    $ 25.4万
  • 项目类别:
Improving representativeness in non-probability surveys and causal inference with regularized regression and post-stratification
通过正则化回归和后分层提高非概率调查和因果推断的代表性
  • 批准号:
    10400107
  • 财政年份:
    2020
  • 资助金额:
    $ 25.4万
  • 项目类别:
Hierarchical Bayes Methods for Serial Dilution Assays
用于连续稀释测定的分层贝叶斯方法
  • 批准号:
    7460798
  • 财政年份:
    2006
  • 资助金额:
    $ 25.4万
  • 项目类别:
Hierarchical Bayes Methods for Serial Dilution Assays
用于连续稀释测定的分层贝叶斯方法
  • 批准号:
    7247911
  • 财政年份:
    2006
  • 资助金额:
    $ 25.4万
  • 项目类别:
Hierarchical Bayes Methods for Serial Dilution Assays
用于连续稀释测定的分层贝叶斯方法
  • 批准号:
    7093264
  • 财政年份:
    2006
  • 资助金额:
    $ 25.4万
  • 项目类别:

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
  • 批准号:
    2322614
  • 财政年份:
    2024
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
  • 批准号:
    NE/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
  • 批准号:
    534092360
  • 财政年份:
    2024
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
  • 批准号:
    24K20765
  • 财政年份:
    2024
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 25.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了