CryoEM guided enhancement of ribosome-targeting antibiotics
CryoEM 引导增强核糖体靶向抗生素
基本信息
- 批准号:10219931
- 负责人:
- 金额:$ 0.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2021-08-02
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisAcetylationAcetyltransferaseAddressAntibiotic ResistanceAntibioticsBacteriaBacterial InfectionsBar CodesBindingBiological AssayCellular StructuresClinicalCollaborationsComplementCoupledCryoelectron MicroscopyDevelopmentDissociationEconomicsElementsEngineeringEnterococcus faecalisEscherichia coliEvaluationFellowshipFutureGoalsGrantGrowthHydrogen BondingLaboratoriesLibrariesMeasuresMinimum Inhibitory Concentration measurementModern MedicineModernizationModificationMolecularMolecular ConformationMutateMutationNatural ProductsNeedlesOutcome StudyPeptidyltransferasePharmaceutical PreparationsProteinsRNAResistanceResistance profileResolutionRibosomal ProteinsRibosomesRoentgen RaysSocietiesStreptograminsStreptomycesStructureSubstrate SpecificitySurvivorsTechniquesTranslatingTranslationsTransmembrane DomainUrsidae FamilyVariantanalogantimicrobialappendagebaseclinically relevantcombatdeep sequencingdesignefflux pumpemerging antibiotic resistanceexperimental studyinhibitor/antagonistinnovationinsightmutation screeningnext generationresistance mechanismresistant strainscreeningsmall moleculetraining opportunitytranslation assay
项目摘要
Project Summary/Abstract - CryoEM Guided Enhancement of Ribosome-Targeting Antibiotics
The continued emergence of antibiotic resistance materially threatens modern medicine and by
extension, modern society. A dearth of newly developed or discovered antibiotics has made the situation even
more dire, as pan-resistant strains have emerged. Retooling and modifying existing classes of antibiotics offers
an opportunity to study and counteract resistance mechanisms while producing truly rationally-designed small
molecule drug leads. Iterative rounds of rapid structural characterization via cryoelectron microscopy (CryoEM)
and synthetic modification offers a rational approach to such retooling efforts. One of the most prolific targets
for antibiotics is the bacterial ribosome, which is inhibited by streptogramin antibiotics produced by several
species of Streptomyces. Streptogramin A (SA) binds at the peptidyl transferase center of the ribosome.
Streptogramins are of limited value clinically because of resistance mechanisms including inactivation by
acetyltransferases such as VatA and molecular interference by ribosomal protection proteins which displace
the inhibitor. In collaboration with the Seiple laboratory at UCSF, we have access to a wide variety of
streptogramin analogs. These are produced using modular synthesis, to allow rapid access to variations in
structural and hydrogen bonding elements. Initially, we will use rounds of Minimum Inhibitory Concentration
screening and structural characterization to increase the efficacy of streptogramin analogs for the E. coli
ribosome. These will be followed by studies tuning the activity of streptogramin A analogs against bacteria
expressing VatA, the acetyltransferase. Analogs with inhibitory effects will be characterized by CryoEM and
acetylation rates will be measured to complement the resistance profiles. To probe the rise of
acetylation-based resistance, we will then passage E. coli expressing VatA in sub-MIC levels of SA analogs
and sequence survivors. We will complement this by comprehensive mutation of VatA by deep mutational
scanning, performing parallel competitive growth and deep sequencing. Together, these approaches will
identify mutations that act as global stabilizers and mutations that provide substrate specificity, and guide
efforts to enhance steric clashes between the SA analog and “unmutable” residues identified. Following these
studies, we will apply similar techniques to explore the structural basis of a ribosomal protection protein, EfrCD.
Such proteins bear homology to efflux pumps, but lack the transmembrane domains required for cellular efflux.
Explorations of the structural space within the ribosome in the presence of such protection proteins will help
probe the poorly understood mechanisms of such resistance. Ultimately, the explosive growth of cryoEM
coupled to modern modular synthesis provides an opportunity to retool antibiotic classes with limited clinical
relevance by specifically modifying them to combat and understand mechanisms of antibiotic resistance.
项目摘要/摘要- CryoEM引导增强核糖体靶向抗生素
抗生素耐药性的持续出现严重威胁着现代医学,
延伸,现代社会。由于缺乏新开发或发现的抗生素,
更可怕的是,随着泛耐药菌株的出现。重组和修改现有类别的抗生素提供
一个机会,研究和抵消阻力机制,同时生产真正合理设计的小,
分子药物先导。通过冷冻电子显微镜(CryoEM)进行迭代循环的快速结构表征
而合成修饰为这种重组努力提供了一种合理的方法。最多产的目标之一
用于抗生素的是细菌核糖体,它被几种抗生素产生的链阳性抗生素抑制,
链霉菌属Streptomyces链阳性菌素A(SA)结合在核糖体的肽基转移酶中心。
链阳性菌素在临床上的价值有限,因为耐药机制,包括失活,
乙酰转移酶如VatA和核糖体保护蛋白的分子干扰,
抑制剂。通过与加州大学旧金山分校的Seiple实验室合作,我们可以获得各种各样的
链阳性菌素类似物。这些是使用模块化合成产生的,以允许快速访问的变化,
结构和氢键元素。最初,我们将使用几轮最低抑制浓度
筛选和结构表征以增加链阳性菌素类似物对大肠杆菌的功效。杆菌
核糖体随后将进行调整链阳性菌素A类似物抗细菌活性的研究
表达乙酰转移酶VatA。具有抑制作用的类似物将通过CryoEM和
将测量乙酰化速率以补充抗性谱。探究…的兴起
基于乙酰化的抗性,然后我们将传代E。以SA类似物的亚MIC水平表达VatA的大肠杆菌
和序列幸存者。我们将通过深度突变VatA的综合突变来补充这一点。
扫描、并行竞争生长和深度测序。总之,这些方法将
鉴定作为全局稳定剂的突变和提供底物特异性的突变,并指导
努力增强SA类似物和鉴定的“不可变”残基之间的空间冲突。遵循这些
研究中,我们将应用类似的技术来探索核糖体保护蛋白EfrCD的结构基础。
这些蛋白质与外排泵具有同源性,但缺乏细胞外排所需的跨膜结构域。
在这种保护蛋白存在的情况下,对核糖体内部结构空间的探索将有助于
探索这种耐药性的机制。最终,冷冻电镜的爆炸性增长
与现代模块化合成相结合,提供了重组具有有限临床应用的抗生素类别的机会。
相关性通过专门修改它们来对抗和了解抗生素耐药性机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David John Lee其他文献
Paropsis atomaria larval feeding induces a chemical but not a physical response in Corymbia citriodora subsp. variegata
- DOI:
10.1007/s00468-021-02086-y - 发表时间:
2021-02-08 - 期刊:
- 影响因子:2.100
- 作者:
Flávia Sarti Bonora;Richard Andrew Hayes;Helen F. Nahrung;David John Lee - 通讯作者:
David John Lee
David John Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Investigating the functions of histone acetylation in genome organization and leukemogenesis
研究组蛋白乙酰化在基因组组织和白血病发生中的功能
- 批准号:
EP/Y000331/1 - 财政年份:2023
- 资助金额:
$ 0.59万 - 项目类别:
Research Grant
Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
- 批准号:
10677295 - 财政年份:2023
- 资助金额:
$ 0.59万 - 项目类别:
Novel roles of PDK2 in heart failure: Regulation of mitochondrial nuclear crosstalk via metabolic regulation and histone acetylation
PDK2 在心力衰竭中的新作用:通过代谢调节和组蛋白乙酰化调节线粒体核串扰
- 批准号:
10635599 - 财政年份:2023
- 资助金额:
$ 0.59万 - 项目类别:
Regulation of hepatic lysine N-acetylation by cysteine proximity due to alcohol toxicity
酒精毒性导致的半胱氨酸接近对肝脏赖氨酸 N-乙酰化的调节
- 批准号:
10752320 - 财政年份:2023
- 资助金额:
$ 0.59万 - 项目类别:
Histone Acetylation Regulates Microglial Innate Immune Memory
组蛋白乙酰化调节小胶质细胞先天免疫记忆
- 批准号:
478927 - 财政年份:2023
- 资助金额:
$ 0.59万 - 项目类别:
Operating Grants
Dysregulation of Histone Acetylation in Parkinson's Disease
帕金森病中组蛋白乙酰化的失调
- 批准号:
10855703 - 财政年份:2023
- 资助金额:
$ 0.59万 - 项目类别:
Obesity-related hypertension: the contribution of PPAR gamma acetylation and asprosin
肥胖相关高血压:PPAR γ 乙酰化和白脂素的贡献
- 批准号:
10654210 - 财政年份:2023
- 资助金额:
$ 0.59万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 0.59万 - 项目类别:
In vivo tracing of hepatic ethanol metabolism to histone acetylation: role of ACSS2 in alcohol-induced liver injury
肝脏乙醇代谢与组蛋白乙酰化的体内追踪:ACSS2 在酒精性肝损伤中的作用
- 批准号:
10667952 - 财政年份:2023
- 资助金额:
$ 0.59万 - 项目类别:
The function of TWIST1 acetylation in cell fate and tissue development
TWIST1 乙酰化在细胞命运和组织发育中的作用
- 批准号:
10726986 - 财政年份:2023
- 资助金额:
$ 0.59万 - 项目类别:














{{item.name}}会员




