An innovative hemoperfusion nanotrap for sepsis treatment.

用于脓毒症治疗的创新血液灌流纳米陷阱。

基本信息

  • 批准号:
    10220077
  • 负责人:
  • 金额:
    $ 37.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-20 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Abstract Sepsis causes >250,000 deaths each year in the USA. Lipopolysaccharide (LPS), shed by gram-negative bacteria, alone is sufficient to induce cytokine storm and sepsis. Meanwhile, many other infections and diseases can also cause sepsis. Sepsis is complex, dynamic, and heterogeneous in both etiology and progression, which has led to failures of almost all unimodal immune modulation therapies. The systemic hyperinflammation in sepsis is generally induced by circulating LPS, pathogenic and damage molecules and signaling molecules (e.g. cytokines). Therefore, physical clearance of these septic triggers and mediators from blood is a valid approach for sepsis treatment. A polymyxin B-coated cartridge, Toraymyxin®, has been used to remove LPS specifically by hemoperfusion (HP). Recently, a Cytosorb® cartridge packed with macroporous resin is used to remove cytokines through nonspecific hydrophobic adsorption. Unfortunately, both products failed in the most recent double-blind controlled clinical trials for sepsis treatment, which is likely due to the moderate efficiency and limited adsorption profiles of both cartridges. In addition, various proinflammatory damage molecules should also be removed for the treatment to be effective. Therefore, we hypothesize that the efficient and simultaneous removal of both septic triggers and mediators from the circulation will control hyperinflammation in sepsis, and thus reducing both morbidity and mortality associated with severe sepsis and septic shock. The PI has developed a versatile telodendrimer (TD) nanoplatform for efficient binding to LPS, cytokines, and DNA fragments via the combination of multivalent and synergistic charge and hydrophobic interactions. Such TD nanotraps can be conjugated onto size-exclusive hydrogel resins to target these small-sized proinflammatory molecules. These nanotrap resins are able to selectively scavenge LPS and proinflammatory cytokines efficiently in the blood from septic mice with much higher efficiencies than existing commercial resins. The charge and hydrophobic moieties in the nanotrap can be easily engineered to target a specific group of inflammatory molecules to optimize sepsis treatment. Aim 1, we will focus on synthesis and optimization of TD nanotraps with different charges and hydrophobic moieties on hydrogel resins and characterize the selectivity and efficiency in adsorbing LPS, DAMP/PAMPs and cytokines; Aim 2, We will conduct comprehensive in vitro studies to characterize the refined nanotrap adsorption and understand the molecular basis in attenuating hyper-immune reactions; Aim 3, we will study the efficacy of nanotrap HP approach in Cecal Ligation and Puncture (CLP) septic rat model and characterize the in vivo immune reactions and pathological improvement in preventing multiple organ failure. These studies will pave the way to translate this innovative HP nanotrap technique into the clinic to improve the survival of patients with severe sepsis and septic shock. It can also be used to treat patients with high risk of a cytokine storm, e.g. cardiac surgery, burn, trauma and CAR-T cancer immunotherapy.
摘要 脓毒症在美国每年导致> 250,000人死亡。脂多糖(LPS),革兰氏阴性菌释放 单独的细菌足以诱导细胞因子风暴和脓毒症。与此同时,许多其他感染和 疾病也可引起败血症。脓毒症在病因学和病理学上都是复杂的、动态的和异质性的。 这导致了几乎所有单峰免疫调节疗法的失败。全身 脓毒症中的过度炎症通常由循环LPS、致病和损伤分子诱导, 信号分子(例如细胞因子)。因此,这些脓毒性触发物和介质的物理清除, 血液是脓毒症治疗的有效途径。已使用多粘菌素B包被的药筒Toraymyxin®, 通过血液灌流(HP)特异性清除LPS。最近,一种填充有大孔吸附剂的Cytosorb®药筒, 树脂用于通过非特异性疏水吸附去除细胞因子。不幸的是,这两种产品 在最近的脓毒症治疗双盲对照临床试验中失败,这可能是由于 两种药筒的效率中等且吸附曲线有限。此外,各种促炎剂 为了使治疗有效,还应该去除损伤分子。因此,我们假设 从循环中有效地和同时地去除脓毒症触发物和介质将 控制脓毒症中的过度炎症,从而降低与 严重脓毒症和脓毒性休克。PI开发了一种通用的末端树枝状聚合物(TD)纳米平台, 通过多价和协同的结合有效结合LPS、细胞因子和DNA片段, 电荷和疏水相互作用。这种TD纳米陷阱可以缀合到尺寸排他的水凝胶上, 树脂来靶向这些小尺寸的促炎分子。这些纳米陷阱树脂能够选择性地 在败血症小鼠的血液中有效地抑制LPS和促炎细胞因子, 比现有的商业树脂更高效。纳米阱中的电荷和疏水部分可以是 易于工程化以靶向特定的炎症分子组,以优化脓毒症治疗。目标1,我们 将专注于合成和优化TD纳米陷阱与不同的电荷和疏水部分, 水凝胶树脂,并表征吸附LPS、DAMP/PAMP和细胞因子的选择性和效率; 目的2,我们将进行全面的体外研究,以表征精制的纳米陷阱吸附, 了解减弱超免疫反应的分子基础;目标3,我们将研究 nanotrap HP方法在盲肠结扎和穿刺(CLP)脓毒症大鼠模型中的应用,并在体内表征 预防多器官功能衰竭的免疫反应和病理改善。这些研究将为 将这种创新的HP nanotrap技术转化为临床的方法,以提高患有 严重脓毒症和脓毒性休克。它也可用于治疗具有细胞因子风暴高风险的患者,例如, 心脏手术、烧伤、创伤和CAR-T癌症免疫治疗。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering Nanotrap Hydrogel for Immune Modulation in Wound Healing.
工程纳米陷阱水凝胶用于伤口愈合中的免疫调节。
  • DOI:
    10.1002/marc.202300322
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Yang,Xiguang;Guo,Dandan;Ji,Xiaotian;Shi,Changying;Luo,Juntao
  • 通讯作者:
    Luo,Juntao
Facial Solid-Phase Synthesis of Well-Defined Zwitterionic Amphiphiles for Enhanced Anticancer Drug Delivery.
  • DOI:
    10.1021/acs.molpharmaceut.1c00163
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Lili Wang;Xiaotian Ji;Dandan Guo;Changying Shi;Juntao Luo
  • 通讯作者:
    Lili Wang;Xiaotian Ji;Dandan Guo;Changying Shi;Juntao Luo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juntao Luo其他文献

Juntao Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juntao Luo', 18)}}的其他基金

An innovative hemoperfusion nanotrap for sepsis treatment.
用于脓毒症治疗的创新血液灌流纳米陷阱。
  • 批准号:
    9974537
  • 财政年份:
    2018
  • 资助金额:
    $ 37.74万
  • 项目类别:
Rational Design and High throughput synthesis of nanocarriers for efficient drug delivery
用于高效药物递送的纳米载体的合理设计和高通量合成
  • 批准号:
    9119009
  • 财政年份:
    2015
  • 资助金额:
    $ 37.74万
  • 项目类别:
Rational Design and High throughput synthesis of nanocarriers for efficient drug delivery
用于高效药物递送的纳米载体的合理设计和高通量合成
  • 批准号:
    8970069
  • 财政年份:
    2015
  • 资助金额:
    $ 37.74万
  • 项目类别:
Size-tunable cancer nanotherapeutics
尺寸可调的癌症纳米疗法
  • 批准号:
    8298658
  • 财政年份:
    2010
  • 资助金额:
    $ 37.74万
  • 项目类别:
Size-tunable cancer nanotherapeutics
尺寸可调的癌症纳米疗法
  • 批准号:
    8098834
  • 财政年份:
    2010
  • 资助金额:
    $ 37.74万
  • 项目类别:
Size-tunable cancer nanotherapeutics
尺寸可调的癌症纳米疗法
  • 批准号:
    8461919
  • 财政年份:
    2010
  • 资助金额:
    $ 37.74万
  • 项目类别:
Size-tunable cancer nanotherapeutics
尺寸可调的癌症纳米疗法
  • 批准号:
    7986263
  • 财政年份:
    2010
  • 资助金额:
    $ 37.74万
  • 项目类别:
Size-tunable cancer nanotherapeutics
尺寸可调的癌症纳米疗法
  • 批准号:
    8657850
  • 财政年份:
    2010
  • 资助金额:
    $ 37.74万
  • 项目类别:

相似海外基金

Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 37.74万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
  • 批准号:
    EP/W027593/2
  • 财政年份:
    2024
  • 资助金额:
    $ 37.74万
  • 项目类别:
    Research Grant
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
  • 批准号:
    2901619
  • 财政年份:
    2024
  • 资助金额:
    $ 37.74万
  • 项目类别:
    Studentship
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
  • 批准号:
    2871817
  • 财政年份:
    2024
  • 资助金额:
    $ 37.74万
  • 项目类别:
    Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
  • 批准号:
    2903366
  • 财政年份:
    2024
  • 资助金额:
    $ 37.74万
  • 项目类别:
    Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
  • 批准号:
    23H02303
  • 财政年份:
    2023
  • 资助金额:
    $ 37.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
  • 批准号:
    2312325
  • 财政年份:
    2023
  • 资助金额:
    $ 37.74万
  • 项目类别:
    Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
  • 批准号:
    23KJ0192
  • 财政年份:
    2023
  • 资助金额:
    $ 37.74万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reflection and adsorption of low energy hydrogen on solid surface
低能氢在固体表面的反射与吸附
  • 批准号:
    23H01158
  • 财政年份:
    2023
  • 资助金额:
    $ 37.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
  • 批准号:
    2303933
  • 财政年份:
    2023
  • 资助金额:
    $ 37.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了