Rational Design and High throughput synthesis of nanocarriers for efficient drug delivery
用于高效药物递送的纳米载体的合理设计和高通量合成
基本信息
- 批准号:9119009
- 负责人:
- 金额:$ 19.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAntineoplastic AgentsBindingBiocompatibleBiodistributionCell Culture TechniquesCharacteristicsChemical StructureChemistryCholic AcidsClinicalCombinatorial SynthesisComputer AssistedComputing MethodologiesData SetDevelopmentDockingDoxorubicinDrug Delivery SystemsDrug IndustryDrug StabilityEngineeringEvaluationExhibitsExperimental DesignsFaceFluorescenceFormulationFutureGoalsHealthIn VitroInheritedLibrariesLiverMeasurableMethodologyMicellesMolecularMolecular WeightMorphologyMuscleNamesNude MiceOligonucleotidesParticle SizePeptidesPharmaceutical PreparationsPolyethylene GlycolsPolylysinePolymer ChemistryPolymersProcessPropertyRoleSN-38Shelter facilitySiteSolubilitySpectrometrySpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStructureStructure-Activity RelationshipSystemTestingTimeToxic effectTrainingValidationVertebral columnWateranimal imagingaqueousbasecombinatorialcopolymerdesigndrug structureexperimental analysisimprovedin vivointerestnanocarriernanoformulationnanomedicinenanoparticlenanotherapeuticphysical propertyscreeningself assemblysimulationsuccesstheoriestumortumor xenograftvirtual
项目摘要
DESCRIPTION: The classic compatibility/solubility theories and molecular simulations have been applied to predict the drug loading properties of polymeric nanoconstructs. However, the success of these approaches to guide nanocarrier design is still limited. At the same time, it is challenging to synthesize a variety of nanocarriers as predicted with the precise control on structure, molecular weight and functional diversity via the conventional polymer chemistry, which further limits the systematic validation and experimental evaluation of the theoretical design. The current development of nanocarriers, especially for polymeric micelle and nanoparticles, is often a trial-error process with numerous attempts on a small subset of polymers, which frequently yield nanoparticles with less optimized drug loading properties and limited opportunity for further optimization. Inspired by the well- defined structure-activity relationship in peptide chemistry, we have developed a PEG-b-dendritic oligomer system (named telodendrimer) using stepwise peptide chemistry, which assembles into micellar nanocarrier for drug delivery. A new version of telodendrimer possesses a function-segregated structure, e.g. a hydrophilic PEG shell, a facial amphiphilic oligo-cholic acid intermediate layer o shelter the interior hydrophobic drug- binding interior core. These telodendrimers inherit the features of peptide, e.g. well-defined highly engineer- able structure, therefore providing a blueprint for both computational design and the combinatorial synthesis of the nanocarriers for systematic optimization. Our hypothesis is that engineering of the core structure of nanocarriers with the introduction of drug binding moieties will be able to optimize drug loading properties within the nanocarrier. It will be tested via the following steps: (1) A training dataset will be ued to validate the computational approach in identifying drug-binding molecules (DBMs), such as, scoring function, criteria for DBM selection, experimental validation of docking energy, etc.; (2) A enhanced natural compound library will be virtually screened against three important anticancer drugs with distinct structures, e.g. cabazitaxel, SN-38 and doxorubicin. Subsequently, the rationally designed nanocarriers will be synthesized combinatorially and characterized; (3) Drug loading properties, in vitro anticancer effects and the in vivo tumor-targeted drug delivery will be characterized to validate the computational predictions. At the end of study, we expect to elucidate the structure-property relationship (SPR) of telodendrimer nanocarriers in drug delivery and several optimized nanocarriers for SN-38, cabazitaxel and doxorubicin delivery will be developed, respectively, for the further in vivo anticancer evaluation Success in this effort is able to create a paradigm shift in the field of drug delivery. It can als benefit the pharmaceutical industry potentially by providing a reliable and predictable path for nanomedicine design and development.
产品说明:经典的相容性/溶解性理论和分子模拟已被应用于预测聚合物纳米结构的载药性能。然而,这些指导纳米载体设计的方法的成功仍然有限。同时,传统的高分子化学方法难以精确控制纳米载体的结构、分子量和功能多样性,从而限制了理论设计的系统验证和实验评价。目前纳米载体的开发,特别是聚合物胶束和纳米颗粒的开发,通常是一个试错过程,在一小部分聚合物上进行了多次尝试,这通常会产生载药性能不太优化的纳米颗粒,进一步优化的机会有限。受肽化学中明确定义的结构-活性关系的启发,我们使用逐步肽化学开发了PEG-b-树枝状寡聚体系统(称为末端树枝状聚合物),其组装成用于药物递送的胶束纳米载体。端树枝状聚合物的新形式具有功能分离的结构,例如亲水性PEG壳、表面两亲性寡聚胆酸中间层以遮蔽内部疏水性药物结合内核。这些末端树枝状聚合物继承了肽的特征,例如定义明确的高度可工程化的结构,因此为纳米载体的计算设计和组合合成提供了蓝图,以进行系统优化。我们的假设是,引入药物结合部分的纳米载体的核心结构的工程化将能够优化纳米载体内的药物负载特性。将通过以下步骤进行测试:(1)使用训练数据集验证识别药物结合分子(DBM)的计算方法,例如评分函数、DBM选择标准、对接能的实验验证等; (2)增强的天然化合物库将针对具有不同结构的三种重要抗癌药物(例如卡巴他赛、SN-38和多柔比星)进行虚拟筛选。随后,将对合理设计的纳米载体进行组合合成和表征;(3)对载药性能、体外抗癌效果和体内肿瘤靶向给药进行表征,验证计算预测。在研究的最后,我们希望阐明末端树枝状聚合物纳米载体在药物递送中的结构-性质关系(SPR),并将分别开发用于SN-38、卡巴他赛和阿霉素递送的几种优化的纳米载体,用于进一步的体内抗癌评价。它也可以通过为纳米药物设计和开发提供可靠和可预测的途径而使制药行业受益。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multifunctional Telodendrimer Nanocarriers Restore Synergy of Bortezomib and Doxorubicin in Ovarian Cancer Treatment.
- DOI:10.1158/0008-5472.can-16-3119
- 发表时间:2017-06-15
- 期刊:
- 影响因子:11.2
- 作者:Wang L;Shi C;Wright FA;Guo D;Wang X;Wang D;Wojcikiewicz RJH;Luo J
- 通讯作者:Luo J
Drug-Specific Design of Telodendrimer Architecture for Effective Doxorubicin Encapsulation.
- DOI:10.1021/acs.jpcb.6b06070
- 发表时间:2016-08
- 期刊:
- 影响因子:0
- 作者:Wenjuan Jiang;Xiaoyi Wang;Dandan Guo;Juntao Luo;S. Nangia
- 通讯作者:Wenjuan Jiang;Xiaoyi Wang;Dandan Guo;Juntao Luo;S. Nangia
Polycation-telodendrimer nanocomplexes for intracellular protein delivery.
- DOI:10.1016/j.colsurfb.2017.12.021
- 发表时间:2018-02-01
- 期刊:
- 影响因子:0
- 作者:Wang X;Shi C;Wang L;Luo J
- 通讯作者:Luo J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juntao Luo其他文献
Juntao Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juntao Luo', 18)}}的其他基金
An innovative hemoperfusion nanotrap for sepsis treatment.
用于脓毒症治疗的创新血液灌流纳米陷阱。
- 批准号:
10220077 - 财政年份:2018
- 资助金额:
$ 19.9万 - 项目类别:
An innovative hemoperfusion nanotrap for sepsis treatment.
用于脓毒症治疗的创新血液灌流纳米陷阱。
- 批准号:
9974537 - 财政年份:2018
- 资助金额:
$ 19.9万 - 项目类别:
Rational Design and High throughput synthesis of nanocarriers for efficient drug delivery
用于高效药物递送的纳米载体的合理设计和高通量合成
- 批准号:
8970069 - 财政年份:2015
- 资助金额:
$ 19.9万 - 项目类别:
相似海外基金
Delays in Acquisition of Oral Antineoplastic Agents
口服抗肿瘤药物的获取延迟
- 批准号:
9975367 - 财政年份:2020
- 资助金额:
$ 19.9万 - 项目类别:
Eliminate the difficulty of venous puncture in patients receiving antineoplastic agents - Development of a new strategy for the prevention of induration-
消除接受抗肿瘤药物的患者静脉穿刺的困难 - 制定预防硬结的新策略 -
- 批准号:
16K11932 - 财政年份:2016
- 资助金额:
$ 19.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of the antineoplastic agents inhibiting DNA replication and their applications to cancer patient treatmen
抗肿瘤药物抑制DNA复制的分子机制及其在癌症患者治疗中的应用
- 批准号:
19591274 - 财政年份:2007
- 资助金额:
$ 19.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PNET EXPERIMENTAL THERAPEUTICS--ANTINEOPLASTIC AGENTS AND TREATMENT DELIVERY
PNET 实验治疗——抗肿瘤药物和治疗实施
- 批准号:
6346309 - 财政年份:2000
- 资助金额:
$ 19.9万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
2885074 - 财政年份:1999
- 资助金额:
$ 19.9万 - 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
- 批准号:
6174221 - 财政年份:1999
- 资助金额:
$ 19.9万 - 项目类别: