Signaling mechanisms that detect stress and maintain homeostasis
检测压力和维持体内平衡的信号机制
基本信息
- 批准号:10219290
- 负责人:
- 金额:$ 49.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-20 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:70-kDa Ribosomal Protein S6 KinasesAcuteAffectAgingAreaCRISPR/Cas technologyCaenorhabditis elegansCell physiologyDataDiseaseDrug Metabolic DetoxicationEnzyme ActivationEventGrowthHealthHomeostasisHumanHuman DevelopmentLongevityMass Spectrum AnalysisMediatingMetabolicMitochondriaModelingModificationMolecular ChaperonesNox enzymeOrganismOrthologous GeneOxidation-ReductionPhenotypePhosphotransferasesPlayProteinsProto-Oncogene Proteins c-aktROCK1 geneReactive Oxygen SpeciesRegulationResearchRoleScreening ResultSignal TransductionStressWorkbasebiological adaptation to stressgenome editingin vivointerestp38 Mitogen Activated Protein Kinaseresponsesensorsmall moleculestress reactivitytranscription factor
项目摘要
Project Summary
This MIRA proposal focuses on two overlapping areas: stress response regulation and the functions of
redox-based signaling in vivo. It is a fundamentally important problem how organisms detect and respond to
different forms of stress. Much has been learned in this area but we still have a very incomplete understanding
of how some stresses are detected, including reactive small molecules such as ROS. For many years my
group has studied stress responses and aging in C. elegans, focusing on the Nrf2 transcription factor ortholog
SKN-1. Nrf2 mediates a conserved detoxification response to reactive small molecules but has many
additional functions, and is of great importance in health and disease. Working in C. elegans we have defined
a number of aspects of SKN-1/Nrf2 regulation and functions, including its major role in longevity assurance.
We have recently uncovered an exciting mechanism of SKN-1/Nrf regulation that forms the basis for
this new research direction. We find that SKN-1 and human Nrf2 are activated at the ER by a localized ROS
signal that can derive from the ER, NOX enzyme activation induced by stress, or mitochondria. This signal
induces sulfenylation of a single Cys within the kinase activation loop of the ER unfolded protein sensor IRE-1,
resulting in acute inhibition of the IRE-1 unfolded protein response and activation of p38 signaling at IRE-1
through a second sulfenylation event. p38 signaling in turn activates SKN-1/Nrf2. Remarkably, other kinases
of major interest (AKT, p70S6K, ROCK1) seem to be regulated through sulfenylation of the same Cys. The
data reveal an unexpected IRE-1 function that is regulated by a redox switch, a major stress sensor for SKN-
1/Nrf2, and a possible rationale for how redox stress can affect so many cellular processes. They also suggest
that the scope and functional versatility of Cys-based signaling are much wider than is generally appreciated.
In our proposed research we will continue to identify mechanisms of SKN-1/Nrf2 regulation and their
functions in vivo, but will also cast our net wider in utilizing the advantages of C. elegans to explore
mechanisms and functions of Cys redox signaling in the context of stress, growth, and other conditions. We
will refine models for IRE-1 regulation of SKN-1/Nrf2 and its functions in vivo. We will also similarly study SKN-
1/Nrf2 regulation by the chaperone TRIC, another mechanism we have identified that may involve redox
signaling, and build upon screening results to develop new models for SKN-1/Nrf2 regulation. Using mass
spectrometry (MS), we will collaboratively identify C. elegans proteins that are Cys-sulfenylated under stress
and growth conditions. We will investigate regulatory and in vivo implications of this modification for the
kinases indicated above, and candidates chosen from our MS data. C. elegans will be ideal for this work
because of the relative rapidity of Cas9/CRISPR genome editing, and phenotypic analyses. Our research will
reveal stress-responsive regulatory mechanisms of fundamental interest, and take major steps towards
identifying new mechanistic targets and functional implications of redox signaling in vivo.
项目摘要
MIRA的建议集中在两个重叠的领域:应激反应调节和
体内基于氧化还原的信号传导。生物体如何检测和响应
不同形式的压力。在这方面已经学到了很多东西,但我们仍然有一个非常不完整的理解
如何检测一些压力,包括活性小分子,如ROS。多年来,我
研究小组研究了C. elegans,专注于Nrf 2转录因子直系同源物
SKN-1。nrf 2介导对反应性小分子的保守解毒反应,但具有许多
它具有额外的功能,对健康和疾病非常重要。工作在C。我们已经定义了
SKN-1/Nrf 2调节和功能的许多方面,包括其在寿命保证中的主要作用。
我们最近发现了一种令人兴奋的SKN-1/Nrf调节机制,该机制构成了
这个新的研究方向。我们发现SKN-1和人Nrf 2在ER被局部ROS激活,
信号可以来自ER、应激诱导的NOX酶激活或线粒体。该信号
诱导ER未折叠蛋白传感器IRE-1的激酶活化环内的单个Cys的亚磺酰化,
导致IRE-1未折叠蛋白应答的急性抑制和IRE-1处p38信号传导的激活
通过第二次亚磺酰化事件。p38信号反过来激活SKN-1/Nrf 2。值得注意的是,
主要感兴趣的(AKT,p70 S6 K,ROCK 1)似乎通过相同Cys的亚磺酰化来调节。的
数据揭示了一种意想不到的IRE-1功能,它由氧化还原开关调节,氧化还原开关是SKN的主要应力传感器,
1/Nrf 2,以及氧化还原应激如何影响如此多的细胞过程的可能原理。他们还建议
基于Cys的信号传导的范围和功能多样性比通常理解的要宽得多。
在我们提出的研究中,我们将继续确定SKN-1/Nrf 2调节的机制及其作用机制。
功能,但也将我们的网络更广泛地利用C的优势。elegans探索
Cys氧化还原信号传导在应激、生长和其他条件下的机制和功能。我们
将完善IRE-1调节SKN-1/Nrf 2及其体内功能的模型。我们也将同样研究SKN-
1/Nrf 2受到伴侣TRIC的调节,这是我们发现的另一种可能涉及氧化还原的机制
信号转导,并建立在筛选结果,以开发新的模型SKN-1/Nrf 2的调控。利用大众
质谱(MS),我们将合作确定C。在应激下Cys-亚磺酰化的线虫蛋白质
和生长条件。我们将研究这种修饰对调节和体内的影响,
激酶,以及从我们的MS数据中选择的候选物。C. elegans将是这项工作的理想选择
因为Cas9/CRISPR基因组编辑和表型分析的相对快速。我们的研究将
揭示具有根本利益的压力响应调节机制,并采取重大步骤,
确定体内氧化还原信号传导的新机制靶点和功能意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
T Keith Blackwell其他文献
T Keith Blackwell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('T Keith Blackwell', 18)}}的其他基金
Identifying metabolic mechanisms that regulate appetite and foodintake
识别调节食欲和食物摄入的代谢机制
- 批准号:
10309083 - 财政年份:2021
- 资助金额:
$ 49.62万 - 项目类别:
Identifying metabolic mechanisms that regulate appetite and foodintake
识别调节食欲和食物摄入的代谢机制
- 批准号:
10475244 - 财政年份:2021
- 资助金额:
$ 49.62万 - 项目类别:
Signaling mechanisms that detect stress and maintain homeostasis
检测压力和维持体内平衡的信号机制
- 批准号:
10701725 - 财政年份:2017
- 资助金额:
$ 49.62万 - 项目类别:
Signaling mechanisms that detect stress and maintain homeostasis
检测压力和维持体内平衡的信号机制
- 批准号:
9276991 - 财政年份:2017
- 资助金额:
$ 49.62万 - 项目类别:
Signaling mechanisms that detect stress and maintain homeostasis
检测压力和维持体内平衡的信号机制
- 批准号:
10406571 - 财政年份:2017
- 资助金额:
$ 49.62万 - 项目类别:
Regulation of SKN-1/Nrf functions by germline stem cells
生殖干细胞对 SKN-1/Nrf 功能的调节
- 批准号:
8582847 - 财政年份:2013
- 资助金额:
$ 49.62万 - 项目类别:
Regulation of SKN-1/Nrf functions by germline stem cells
生殖干细胞对 SKN-1/Nrf 功能的调节
- 批准号:
8716631 - 财政年份:2013
- 资助金额:
$ 49.62万 - 项目类别:
Regulation of C. elegans SKN-1/Nrf activity by the unfolded protein response
通过未折叠蛋白反应调节线虫 SKN-1/Nrf 活性
- 批准号:
8726427 - 财政年份:2012
- 资助金额:
$ 49.62万 - 项目类别:
Regulation of C. elegans SKN-1/Nrf activity by the unfolded protein response
通过未折叠蛋白反应调节线虫 SKN-1/Nrf 活性
- 批准号:
8233869 - 财政年份:2012
- 资助金额:
$ 49.62万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 49.62万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 49.62万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 49.62万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 49.62万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 49.62万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 49.62万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 49.62万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 49.62万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 49.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 49.62万 - 项目类别:
Operating Grants














{{item.name}}会员




