Signaling mechanisms that detect stress and maintain homeostasis
检测压力和维持体内平衡的信号机制
基本信息
- 批准号:9276991
- 负责人:
- 金额:$ 43.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-20 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:70-kDa Ribosomal Protein S6 KinasesAcuteAffectAgingAreaCRISPR/Cas technologyCaenorhabditis elegansCell physiologyDataDiseaseDrug Metabolic DetoxicationEnzyme ActivationEventGrowthHealthHomeostasisHumanHuman DevelopmentLongevityMAPK14 geneMass Spectrum AnalysisMediatingMetabolicMitochondriaModelingModificationMolecular ChaperonesNox enzymeOrganismOrthologous GeneOxidation-ReductionPhenotypePhosphotransferasesPlayProteinsProto-Oncogene Proteins c-aktROCK1 geneReactive Oxygen SpeciesRegulationResearchRoleScreening ResultSignal TransductionStressWorkbasebiological adaptation to stressgenome editingin vivointerestresponsesensorsmall moleculestress reactivitytranscription factor
项目摘要
Project Summary
This MIRA proposal focuses on two overlapping areas: stress response regulation and the functions of
redox-based signaling in vivo. It is a fundamentally important problem how organisms detect and respond to
different forms of stress. Much has been learned in this area but we still have a very incomplete understanding
of how some stresses are detected, including reactive small molecules such as ROS. For many years my
group has studied stress responses and aging in C. elegans, focusing on the Nrf2 transcription factor ortholog
SKN-1. Nrf2 mediates a conserved detoxification response to reactive small molecules but has many
additional functions, and is of great importance in health and disease. Working in C. elegans we have defined
a number of aspects of SKN-1/Nrf2 regulation and functions, including its major role in longevity assurance.
We have recently uncovered an exciting mechanism of SKN-1/Nrf regulation that forms the basis for
this new research direction. We find that SKN-1 and human Nrf2 are activated at the ER by a localized ROS
signal that can derive from the ER, NOX enzyme activation induced by stress, or mitochondria. This signal
induces sulfenylation of a single Cys within the kinase activation loop of the ER unfolded protein sensor IRE-1,
resulting in acute inhibition of the IRE-1 unfolded protein response and activation of p38 signaling at IRE-1
through a second sulfenylation event. p38 signaling in turn activates SKN-1/Nrf2. Remarkably, other kinases
of major interest (AKT, p70S6K, ROCK1) seem to be regulated through sulfenylation of the same Cys. The
data reveal an unexpected IRE-1 function that is regulated by a redox switch, a major stress sensor for SKN-
1/Nrf2, and a possible rationale for how redox stress can affect so many cellular processes. They also suggest
that the scope and functional versatility of Cys-based signaling are much wider than is generally appreciated.
In our proposed research we will continue to identify mechanisms of SKN-1/Nrf2 regulation and their
functions in vivo, but will also cast our net wider in utilizing the advantages of C. elegans to explore
mechanisms and functions of Cys redox signaling in the context of stress, growth, and other conditions. We
will refine models for IRE-1 regulation of SKN-1/Nrf2 and its functions in vivo. We will also similarly study SKN-
1/Nrf2 regulation by the chaperone TRIC, another mechanism we have identified that may involve redox
signaling, and build upon screening results to develop new models for SKN-1/Nrf2 regulation. Using mass
spectrometry (MS), we will collaboratively identify C. elegans proteins that are Cys-sulfenylated under stress
and growth conditions. We will investigate regulatory and in vivo implications of this modification for the
kinases indicated above, and candidates chosen from our MS data. C. elegans will be ideal for this work
because of the relative rapidity of Cas9/CRISPR genome editing, and phenotypic analyses. Our research will
reveal stress-responsive regulatory mechanisms of fundamental interest, and take major steps towards
identifying new mechanistic targets and functional implications of redox signaling in vivo.
项目概要
MIRA 提案重点关注两个重叠领域:压力反应调节和
基于氧化还原的体内信号传导。生物体如何检测和响应是一个根本性的重要问题。
不同形式的压力。在这方面我们已经学到了很多东西,但我们的理解仍然非常不完整
研究如何检测某些应激,包括活性小分子(例如 ROS)。多年来我的
研究小组研究了秀丽隐杆线虫的应激反应和衰老,重点关注 Nrf2 转录因子直系同源物
SKN-1。 Nrf2 介导对反应性小分子的保守解毒反应,但有许多
附加功能,对健康和疾病非常重要。在秀丽隐杆线虫中我们定义了
SKN-1/Nrf2 调节和功能的许多方面,包括其在长寿保证中的主要作用。
我们最近发现了一种令人兴奋的 SKN-1/Nrf 调节机制,该机制构成了
这个新的研究方向。我们发现 SKN-1 和人类 Nrf2 在 ER 处被局部 ROS 激活
信号可以源自应激诱导的 ER、NOX 酶激活或线粒体。这个信号
诱导 ER 未折叠蛋白传感器 IRE-1 激酶激活环内单个 Cys 的磺酰化,
导致 IRE-1 未折叠蛋白反应的急性抑制和 IRE-1 上 p38 信号的激活
通过第二次磺酰化事件。 p38 信号转而激活 SKN-1/Nrf2。值得注意的是,其他激酶
主要兴趣(AKT、p70S6K、ROCK1)似乎是通过相同半胱氨酸的磺酰化来调节的。这
数据揭示了一个意想不到的 IRE-1 功能,该功能由氧化还原开关调节,氧化还原开关是 SKN- 的主要压力传感器
1/Nrf2,以及氧化还原应激如何影响如此多的细胞过程的可能原理。他们还建议
基于 Cys 的信号传导的范围和功能多样性比通常认为的要广泛得多。
在我们提出的研究中,我们将继续确定 SKN-1/Nrf2 调节机制及其作用
体内功能,但也将扩大我们的网络,利用秀丽隐杆线虫的优势来探索
Cys 氧化还原信号在应激、生长和其他条件下的机制和功能。我们
将完善 IRE-1 对 SKN-1/Nrf2 的调节及其体内功能的模型。我们也会类似地研究SKN-
分子伴侣 TRIC 调节 1/Nrf2,这是我们发现的另一种可能涉及氧化还原的机制
信号传导,并根据筛选结果开发 SKN-1/Nrf2 调控的新模型。使用质量
光谱分析 (MS),我们将合作鉴定压力下半胱氨酸磺酰化的秀丽隐杆线虫蛋白
和生长条件。我们将研究这种修饰对监管和体内的影响
上述激酶以及从我们的 MS 数据中选择的候选激酶。线虫将是这项工作的理想选择
因为 Cas9/CRISPR 基因组编辑和表型分析的相对速度。我们的研究将
揭示根本利益的压力反应监管机制,并采取重大步骤
确定体内氧化还原信号传导的新机制目标和功能影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
T Keith Blackwell其他文献
T Keith Blackwell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('T Keith Blackwell', 18)}}的其他基金
Identifying metabolic mechanisms that regulate appetite and foodintake
识别调节食欲和食物摄入的代谢机制
- 批准号:
10309083 - 财政年份:2021
- 资助金额:
$ 43.65万 - 项目类别:
Identifying metabolic mechanisms that regulate appetite and foodintake
识别调节食欲和食物摄入的代谢机制
- 批准号:
10475244 - 财政年份:2021
- 资助金额:
$ 43.65万 - 项目类别:
Signaling mechanisms that detect stress and maintain homeostasis
检测压力和维持体内平衡的信号机制
- 批准号:
10701725 - 财政年份:2017
- 资助金额:
$ 43.65万 - 项目类别:
Signaling mechanisms that detect stress and maintain homeostasis
检测压力和维持体内平衡的信号机制
- 批准号:
10219290 - 财政年份:2017
- 资助金额:
$ 43.65万 - 项目类别:
Signaling mechanisms that detect stress and maintain homeostasis
检测压力和维持体内平衡的信号机制
- 批准号:
10406571 - 财政年份:2017
- 资助金额:
$ 43.65万 - 项目类别:
Regulation of SKN-1/Nrf functions by germline stem cells
生殖干细胞对 SKN-1/Nrf 功能的调节
- 批准号:
8582847 - 财政年份:2013
- 资助金额:
$ 43.65万 - 项目类别:
Regulation of SKN-1/Nrf functions by germline stem cells
生殖干细胞对 SKN-1/Nrf 功能的调节
- 批准号:
8716631 - 财政年份:2013
- 资助金额:
$ 43.65万 - 项目类别:
Regulation of C. elegans SKN-1/Nrf activity by the unfolded protein response
通过未折叠蛋白反应调节线虫 SKN-1/Nrf 活性
- 批准号:
8726427 - 财政年份:2012
- 资助金额:
$ 43.65万 - 项目类别:
Regulation of C. elegans SKN-1/Nrf activity by the unfolded protein response
通过未折叠蛋白反应调节线虫 SKN-1/Nrf 活性
- 批准号:
8233869 - 财政年份:2012
- 资助金额:
$ 43.65万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 43.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Standard Grant














{{item.name}}会员




