Supplemental transmission aided attenuation correction for high performance quantitative PET imaging
高性能定量 PET 成像的补充传输辅助衰减校正
基本信息
- 批准号:10222671
- 负责人:
- 金额:$ 8.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsArtificial IntelligenceBiomedical EngineeringBrainCalibrationCardiacClinicalClinical TrialsDataDecision MakingDevelopmentDevicesDiagnosticDoseEquilibriumEquipmentGoalsGoldImageJoint repairJointsLeadMalignant neoplasm of prostateMeasurementMeasuresMethodsMissionModalityMonte Carlo MethodMotionNational Institute of Biomedical Imaging and BioengineeringNeuroendocrine TumorsNoiseOncologyPET/CT scanPatientsPerformancePhotonsPhysiologicalPositioning AttributePositron-Emission TomographyProtocols documentationPublic HealthRadiation Dose UnitRadiation ScatteringRadioactiveRadiology SpecialtyResearchScanningSchemeSeriesSignal TransductionSilverSourceTimeTissuesTracerTrainingTubeattenuationbasedata qualityexperimental studyfluorodeoxyglucoseimaging studyimprovedinnovationintelligent algorithmpatient safetypediatric patientsprototyperadiotracerreconstructionrespiratorytransmission processuptake
项目摘要
PROJECT SUMMARY
Quantitative tracer images from combined PET-CT and PET-MR are increasingly being utilized for radiological
decision-making and clinical trials. CT and MR based data corrections for PET photon attenuation, typically the
largest impact on tracer quantification, can lead to increased radiation dose to the subject or require lengthy
additional dedicated MR scans, respectively. Artificial intelligence algorithms that use the PET signal
originating from the subject alone to estimate attenuation have shown promising early results, but, can have
reduced performance when applied to exams different from the training data. Reconstruction methods that
jointly estimate both the measured attenuation and tracer contrast from the subject PET signal represent a
viable alternative, but, to date, have failed to match the quantification of CT approaches. Consequently, no
single approach for PET attenuation correction that consistently produces high quantification and does not
compromise patient safety or throughput currently exists. This is an important problem, since research and
clinical findings must balance these practical issues with data quality. The overall objective of this proposal is
to develop and characterize a high performance attenuation correction scheme that utilizes both the PET
signal from the subject and a variable activity external source. The central hypothesis is that the proposed
reconstruction method will have significantly improved performance over reconstruction algorithms using PET
signal originating from the subject alone, independent of the imaging study. The two specific aims include: 1)
developing and validating a supplemental transmission-based algorithm for correcting PET images for photon
attenuation during commercial PET imaging and 2) prototyping and characterizing a device capable of
dynamically varying external source activity. The result of Aim 1 will be a reconstruction algorithm that is
optimized to produce quantitative PET data for some of the most common clinical PET studies. Under Aim 2, a
prototype device that can repeatability vary the external source activity in order to maximize tracer
quantification while minimizing the unavoidable degradation to patient tracer image noise, caused by the
introduction of any external source, will be produced. The innovation is an attenuation correction strategy that
greatly mitigates the limitations of previous joint reconstruction methods to deliver quantitative PET diagnostics
that are expected to match those of silver standard CT approaches. This is significant because the number of
patients receiving brain and cardiac PET-CT scans, exams the proposed method is expected to benefit, is
steadily increasing. For PET-MR, the method may improve tracer quantification where MR has limited
performance and increase patient throughput by eliminating the need for non-diagnostic attenuation-only MR
acquisitions. Thus, the proposed strategy has great potential to significantly improve radiological decision-
making and clinical trial findings that rely on quantitative PET uptake measurements.
项目总结
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Spencer L. Bowen其他文献
High-resolution 18F-FDG PET with MRI for monitoring response to treatment in rheumatoid arthritis
- DOI:
10.1007/s00259-009-1364-x - 发表时间:
2010-01-30 - 期刊:
- 影响因子:7.600
- 作者:
Abhijit J. Chaudhari;Spencer L. Bowen;George W. Burkett;Nathan J. Packard;Felipe Godinez;Anand A. Joshi;Stanley M. Naguwa;David K. Shelton;John C. Hunter;John M. Boone;Michael H. Buonocore;Ramsey D. Badawi - 通讯作者:
Ramsey D. Badawi
Spencer L. Bowen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Spencer L. Bowen', 18)}}的其他基金
Supplemental transmission aided attenuation correction for high performance quantitative PET imaging
高性能定量 PET 成像的补充传输辅助衰减校正
- 批准号:
10308169 - 财政年份:2020
- 资助金额:
$ 8.65万 - 项目类别:
Ultraportable Stroke CT Based on Stationary Carbon Nanotube X-ray Source and Deep Learning Image Formation
基于固定碳纳米管X射线源和深度学习成像的超便携式中风CT
- 批准号:
9909721 - 财政年份:2019
- 资助金额:
$ 8.65万 - 项目类别:
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 8.65万 - 项目类别:
Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
- 批准号:
LP210200798 - 财政年份:2023
- 资助金额:
$ 8.65万 - 项目类别:
Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 8.65万 - 项目类别:
Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 8.65万 - 项目类别:
Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
- 批准号:
ES/R00983X/2 - 财政年份:2022
- 资助金额:
$ 8.65万 - 项目类别:
Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 8.65万 - 项目类别:
Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
- 批准号:
10683803 - 财政年份:2022
- 资助金额:
$ 8.65万 - 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
- 批准号:
460558 - 财政年份:2022
- 资助金额:
$ 8.65万 - 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
- 批准号:
RGPIN-2022-04417 - 财政年份:2022
- 资助金额:
$ 8.65万 - 项目类别:
Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 8.65万 - 项目类别:














{{item.name}}会员




