Supplemental transmission aided attenuation correction for high performance quantitative PET imaging

高性能定量 PET 成像的补充传输辅助衰减校正

基本信息

  • 批准号:
    10308169
  • 负责人:
  • 金额:
    $ 8.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Quantitative tracer images from combined PET-CT and PET-MR are increasingly being utilized for radiological decision-making and clinical trials. CT and MR based data corrections for PET photon attenuation, typically the largest impact on tracer quantification, can lead to increased radiation dose to the subject or require lengthy additional dedicated MR scans, respectively. Algorithms using the PET signal originating from the subject to jointly estimate both the attenuation and tracer contrast have been proposed as robust alternatives, but, to date, have failed to match the quantification of CT approaches. Consequently, no single approach for PET attenuation correction that produces high quantification and does not compromise patient safety or throughput currently exists. This is an important problem, since research and clinical findings must balance these practical issues with data quality. The overall objective of this proposal is to develop and characterize a high performance attenuation correction scheme that utilizes both the PET signal from the subject and a variable activity external source. The central hypothesis is that the proposed reconstruction method will have significantly improved performance over algorithms using PET signal originating from the subject alone, independent of the imaging study. The two specific aims include: 1) developing and validating a supplemental transmission-based algorithm for correcting PET images for photon attenuation during commercial PET imaging and 2) prototyping and characterizing a device capable of dynamically varying external source activity. The result of Aim 1 will be a reconstruction algorithm that is optimized to produce quantitative PET data for some of the most common clinical PET studies. Under Aim 2, a prototype device that can repeatability vary the external source activity in order to maximize tracer quantification while minimizing the unavoidable degradation to patient tracer image noise, caused by the introduction of any external source, will be produced. The innovation is an attenuation correction strategy that greatly mitigates the limitations of previous joint reconstruction methods to deliver quantitative PET diagnostics that are expected to match those of silver standard CT approaches. This is significant because the number of patients receiving brain and cardiac PET- CT scans, exams the proposed method is expected to benefit, is steadily increasing. For PET-MR, the method may improve tracer quantification where MR has limited performance and increase patient throughput by eliminating the need for non-diagnostic attenuation-only MR acquisitions. Thus, the proposed strategy has great potential to significantly improve radiological decision-making and clinical trial findings that rely on quantitative PET uptake measurements.
项目概要 PET-CT 和 PET-MR 组合的定量示踪图像越来越多地用于放射学检查 决策和临床试验。基于 CT 和 MR 的 PET 光子衰减数据校正,通常是 对示踪剂定量影响最大,可能导致受试者的辐射剂量增加或需要较长时间 分别进行额外的专用 MR 扫描。使用源自受试者的 PET 信号的算法 联合估计衰减和示踪对比度已被提议作为稳健的替代方案,但是, 日期,未能匹配 CT 方法的量化。因此,没有单一的 PET 方法 衰减校正可产生高量化且不会影响患者安全或通量 目前存在。这是一个重要的问题,因为研究和临床发现必须平衡这些实际情况 数据质量问题。该提案的总体目标是开发和表征高 性能衰减校正方案,利用来自受试者的 PET 信号和变量 活动外部来源。中心假设是所提出的重建方法将具有 与使用仅源自受试者的 PET 信号的算法相比,显着提高了性能, 独立于影像学研究。这两个具体目标包括:1)开发和验证补充 基于传输的算法,用于校正商业 PET 期间光子衰减的 PET 图像 成像;2) 对能够动态改变外部源活动的设备进行原型设计和表征。 目标 1 的结果将是一种经过优化的重建算法,可生成定量 PET 数据 一些最常见的临床 PET 研究。在目标 2 下,原型设备可以重复性改变 外部源活动,以最大限度地提高示踪剂定量,同时最大限度地减少不可避免的降解 由于引入任何外部源而导致的患者追踪图像噪声都会产生。这 创新的是一种衰减校正策略,大大缓解了之前联合技术的局限性 提供定量 PET 诊断的重建方法有望与银的诊断相媲美 标准 CT 方法。这很重要,因为接受脑部和心脏 PET 治疗的患者数量 CT扫描、检查建议方法预计受益,正在稳步增加。对于 PET-MR,该方法 可以改善 MR 性能有限的示踪剂定量,并通过以下方式提高患者吞吐量 消除了仅进行非诊断衰减 MR 采集的需要。因此,所提出的策略 显着改善依赖于放射学决策和临床试验结果的巨大潜力 定量 PET 摄取测量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Spencer L. Bowen其他文献

High-resolution 18F-FDG PET with MRI for monitoring response to treatment in rheumatoid arthritis
  • DOI:
    10.1007/s00259-009-1364-x
  • 发表时间:
    2010-01-30
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Abhijit J. Chaudhari;Spencer L. Bowen;George W. Burkett;Nathan J. Packard;Felipe Godinez;Anand A. Joshi;Stanley M. Naguwa;David K. Shelton;John C. Hunter;John M. Boone;Michael H. Buonocore;Ramsey D. Badawi
  • 通讯作者:
    Ramsey D. Badawi

Spencer L. Bowen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Spencer L. Bowen', 18)}}的其他基金

Supplemental transmission aided attenuation correction for high performance quantitative PET imaging
高性能定量 PET 成像的补充传输辅助衰减校正
  • 批准号:
    10222671
  • 财政年份:
    2020
  • 资助金额:
    $ 8.63万
  • 项目类别:
Ultraportable Stroke CT Based on Stationary Carbon Nanotube X-ray Source and Deep Learning Image Formation
基于固定碳纳米管X射线源和深度学习成像的超便携式中风CT
  • 批准号:
    9909721
  • 财政年份:
    2019
  • 资助金额:
    $ 8.63万
  • 项目类别:

相似国自然基金

Transmission 特征值及其相关逆散射问题的研究
  • 批准号:
    11571132
  • 批准年份:
    2015
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
无线输电关键技术理论与实验研究
  • 批准号:
    60471033
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

[R21] Integrated computer-aided, point-of-care ultrasound for tuberculosis screening
[R21] 用于结核病筛查的集成计算机辅助床旁超声
  • 批准号:
    10511853
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
AI-Aided Tool for Day Zero Selection of High Performing Cells for Biopharma Cell Line Development
用于生物制药细胞系开发的高性能细胞零日选择的人工智能辅助工具
  • 批准号:
    10672364
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
[R21] Integrated computer-aided, point-of-care ultrasound for tuberculosis screening
[R21] 用于结核病筛查的集成计算机辅助床旁超声
  • 批准号:
    10647808
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
AI-Aided Tool for Day Zero Selection of High Performing Cells for Biopharma Cell Line Development
用于生物制药细胞系开发的高性能细胞零日选择的人工智能辅助工具
  • 批准号:
    10546865
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
Supplemental transmission aided attenuation correction for high performance quantitative PET imaging
高性能定量 PET 成像的补充传输辅助衰减校正
  • 批准号:
    10222671
  • 财政年份:
    2020
  • 资助金额:
    $ 8.63万
  • 项目类别:
3D Printing bone graft containing controlled-release growth factors and cytokines
含有控释生长因子和细胞因子的 3D 打印骨移植物
  • 批准号:
    10275493
  • 财政年份:
    2020
  • 资助金额:
    $ 8.63万
  • 项目类别:
3D Printing bone graft containing controlled-release growth factors and cytokines
含有控释生长因子和细胞因子的 3D 打印骨移植物
  • 批准号:
    10731348
  • 财政年份:
    2020
  • 资助金额:
    $ 8.63万
  • 项目类别:
Next-Generation RF Coils with High-Permittivity Material for Improved Performance in MRI
采用高介电常数材料的下一代射频线圈可提高 MRI 性能
  • 批准号:
    9007398
  • 财政年份:
    2016
  • 资助金额:
    $ 8.63万
  • 项目类别:
Identification of preclinical drug candidates for the treatment of schistosomiasis
治疗血吸虫病的临床前候选药物的鉴定
  • 批准号:
    9813829
  • 财政年份:
    2016
  • 资助金额:
    $ 8.63万
  • 项目类别:
Refinement of an Autocidal Gravid Ovitrap for mass-manufacturing
改进用于大规模生产的自杀妊娠产卵器
  • 批准号:
    9276569
  • 财政年份:
    2015
  • 资助金额:
    $ 8.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了