Ultraportable Stroke CT Based on Stationary Carbon Nanotube X-ray Source and Deep Learning Image Formation

基于固定碳纳米管X射线源和深度学习成像的超便携式中风CT

基本信息

  • 批准号:
    9909721
  • 负责人:
  • 金额:
    $ 22.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-30 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The goal of this 12-month SBIR phase 1 project is developing an imaging device that will enable highly efficient and cost-effective stroke imaging for patients suffered trauma events. The expected technical outcome will be a proof-of-concept head CT imaging system with sub- second imaging speed, sub-mSv radiation dose, and high-quality images. Imaging systems with such capabilities will address the current deficiency in timely diagnosis of stroke patients, and benefit society with higher efficiency and lower cost. Such imaging device will make a strong economic impact on the global head CT imaging market, which is estimated to be about $36 billion in the U.S. In a longer term, the novel imaging technology could be translated into markets for security screening, industry inspection, and dental imaging. This project is based on the recent research results by Dr. Cao's team under the support of an NSF CAREER award (PI Dr. Cao, 08/01/2014-07/31/2019, $400,000) and a Dr. Cao's Commonwealth Research Commercialization Fund (CRCF) award (Title: “Computed Tomography Without Moving Parts for Fast and Portable Biomedical Imaging”, 07/01/2017- 06/30/2019, $100,000). The project has a strong footing in intellectual property. The technology is protected by a few patent applications at the Virginia Tech, including US. 62/316649, “Ultrafast Micro-CT for Imaging Free-Moving Animals” (Inventor: Guohua Cao), and PCT/US2013/061049 and US14/429835, “System and Method of Stationary Source Computed Tomography” (Inventor: Guohua Cao, et. al.). In this project, the team will design and build a proof-of-concept head CT platform to test the feasibility of ultraportable and compact head CT based on the stationary carbon nanotube x-ray source design and deep learning image reconstruction algorithm. The expected outcomes from this project include demonstration of the feasibility for ultrafast, low dose, and diagnostic imaging capabilities for intracerebral hemorrhage in head phantoms (ICH), with potential automatic ICH identification through deep learning algorithm. A ready-to- prototype head CT device will be optimized and designed, and a corresponding business plan will be developed.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Spencer L. Bowen其他文献

High-resolution 18F-FDG PET with MRI for monitoring response to treatment in rheumatoid arthritis
  • DOI:
    10.1007/s00259-009-1364-x
  • 发表时间:
    2010-01-30
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Abhijit J. Chaudhari;Spencer L. Bowen;George W. Burkett;Nathan J. Packard;Felipe Godinez;Anand A. Joshi;Stanley M. Naguwa;David K. Shelton;John C. Hunter;John M. Boone;Michael H. Buonocore;Ramsey D. Badawi
  • 通讯作者:
    Ramsey D. Badawi

Spencer L. Bowen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Spencer L. Bowen', 18)}}的其他基金

Supplemental transmission aided attenuation correction for high performance quantitative PET imaging
高性能定量 PET 成像的补充传输辅助衰减校正
  • 批准号:
    10222671
  • 财政年份:
    2020
  • 资助金额:
    $ 22.51万
  • 项目类别:
Supplemental transmission aided attenuation correction for high performance quantitative PET imaging
高性能定量 PET 成像的补充传输辅助衰减校正
  • 批准号:
    10308169
  • 财政年份:
    2020
  • 资助金额:
    $ 22.51万
  • 项目类别:

相似海外基金

AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
  • 批准号:
    22K09863
  • 财政年份:
    2022
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
  • 批准号:
    22650002
  • 财政年份:
    2010
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
  • 批准号:
    0218568
  • 财政年份:
    2002
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
  • 批准号:
    9404947
  • 财政年份:
    1994
  • 资助金额:
    $ 22.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了