Mechanisms of Sonic hedgehog mediated skeletal patterning in zebrafish fin appendages
声波刺猬介导斑马鱼鳍附属物骨骼模式的机制
基本信息
- 批准号:10221590
- 负责人:
- 金额:$ 4.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdvocacyAttenuatedAutomobile DrivingBinding SitesBone DiseasesCRISPR/Cas technologyCell CountCellsCellular biologyConfocal MicroscopyDataDefectDetectionDevelopmentDevelopmental BiologyDigit structureDiseaseDistalDoctor of PhilosophyEpidermisFellowshipFishesGeneticGenetic TranscriptionGenomic approachGrowthHumanImaging DeviceImmature BoneIndividualIntronsLateralLigandsLimb structureMediatingMentorshipMessenger RNAModelingMonitorMorphogenesisMosaicismMutagenesisNatural regenerationNucleic Acid Regulatory SequencesOrthologous GeneOsteoblastsPatternPopulationProteinsPublishingRegenerative MedicineRegulatory ElementReporterReportingResearchSHH geneShapesSignal PathwaySignal TransductionSiteSkeletonSonic Hedgehog PathwaySourceTestingTetrapodaTherapeuticTrainingTranscription CoactivatorTranscriptional ActivationTransgenic OrganismsTraumaVariantWNT Signaling PathwayWorkZebrafishappendagebeta cateninbonebone cellcomparative genomicsfunctional genomicsin vivoinsightinterestmolecular imagingmutantnovelpreventprogenitorregenerativerepairedresponseskeletalsmoothened signaling pathway
项目摘要
PROJECT SUMMARY/ ABSTRACT:
This project will provide the applicant with Ph.D. training in cell and developmental biology. Thesis research will
further our understanding how cell signaling networks regulate skeletal pattering of zebrafish fin appendages
during development and regeneration. The applicant also will pursue professional development, mentorship,
and advocacy activities during the fellowship period. Zebrafish fins robustly develop and regenerate with a
branched skeleton of bony rays, which are likely analogous to tetrapod digits. Ray bifurcation occurs by the
splitting of progenitor osteoblast (pOb) pools that progressively produce extending skeletal rays. Sonic
hedgehog signaling is specifically required for ray branching during development and regeneration. In both
cases, shha is uniquely expressed by small basal epidermis domains overlying pOb pools found at the distal
aspect of outgrowing fins. Basal epidermal cells constantly migrate distally, upregulating shha only when
moving into the pOb-defined growth zone. Importantly, ray branching morphogenesis appears to initiate by the
lateral splitting of the shha+-epidermal domain followed by Shh-responsive pObs. Therefore, a key unresolved
upstream step in ray branching is the transcriptional activation of basal epidermal shha. This proposal aims to
uncover mechanisms of skeletal morphogenesis by investigating how shha is induced in pOb-neighboring
basal epidermis. Previous studies and the applicant’s preliminary data suggest canonical Wnt/b-catenin, well
known to be required for fin regenerative outgrowth, is upstream of basal epidermal shha. Further, the
applicant has identified candidate conserved binding sites for the canonical Wnt effector, Lef1, within a
functionally important shha regulatory region. Collectively, these and other results support the applicant’s
hypothesis that a pOb-produced Wnt activates canonical Wnt/b-catenin signaling in nearby basal epidermal
cells to induce shha expression. The applicant will explore this hypothesis with two specific aims. Aim 1 will
determine how Wnt signaling acts upstream of Shh signaling for ray branching morphogenesis using inducible
in vivo manipulations of canonical Wnt activity and CRISPR/Cas9 mutagenesis of a canonical pOb-expressed
Wnt. Aim 2 will explore functional requirements of the candidate Lef1 binding sites within the shha locus.
Further, the applicant will use comparative genomics and mutagenized transgenic reports to identify cis-
regulatory elements specifically driving shha expression in distal fin basal epidermis. Together, these aims will
provide a detailed understanding how intersecting signaling pathways direct skeletal patterning of fin
appendages. The proposed research will uncover Shh signaling mechanisms of potential relevance in many
biomedical contexts and support novel regenerative medicine approaches for bone damage and disease.
项目总结/摘要:
该项目将为申请人提供博士学位。细胞和发育生物学培训。论文研究将
进一步了解细胞信号网络如何调节斑马鱼鳍附属物的骨骼模式
在发育和再生过程中。申请人还将追求专业发展,导师,
研究金期间的宣传活动。斑马鱼鳍的发育和再生具有很强的
骨条的分支骨骼,可能类似于四足动物的趾。光线分叉发生在
祖细胞成骨细胞(pOb)池分裂,逐渐产生延伸的骨骼射线。声波
hedgehog信号是发育和再生过程中射线分支所特别需要的。无论是
在一些病例中,shha由位于远端的pOb池上的小基底表皮结构域唯一表达。
长出鳍的方面。基底表皮细胞不断向远端迁移,只有当
移动到pob定义的生长区。重要的是,射线分支形态发生似乎是由
shha+-表皮结构域的横向分裂,随后是Shh-响应性pOb。因此,一个未解决的关键
射线分支的上游步骤是基底表皮shha的转录激活。这项建议旨在
通过研究shha是如何在pob-邻近的细胞中诱导的,揭示骨骼形态发生的机制。
基部表皮以前的研究和申请人的初步数据表明,典型的Wnt/b-连环蛋白,以及
已知是指再生生长所必需的,是基底表皮shha的上游。此夕h
申请人已经鉴定了典型Wnt效应子Lef 1的候选保守结合位点,
功能上重要的shha调节区。总的来说,这些和其他结果支持申请人的
pOB产生的Wnt激活附近基底表皮中典型Wnt/β-连环蛋白信号传导的假设
细胞以诱导SHHA表达。申请人将以两个具体目标探讨这一假设。目标1将
确定Wnt信号传导如何作用于Shh信号传导的上游,用于射线分支形态发生,
典型pOb表达的Wnt基因的典型Wnt活性和CRISPR/Cas9诱变的体内操作
Wnt.目的2将探讨候选Lef 1结合位点的shha基因座内的功能要求。
此外,申请人将使用比较基因组学和诱变转基因报告来鉴定顺式-
在远鳍基底表皮中特异性驱动shha表达的调节元件。总之,这些目标将
提供了一个详细的了解如何交叉信号通路直接骨骼模式的鳍
附肢拟议的研究将揭示Shh信号机制的潜在相关性,
生物医学背景和支持新的再生医学方法的骨损伤和疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Robbins其他文献
Amy Robbins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Robbins', 18)}}的其他基金
Mechanisms of Sonic hedgehog mediated skeletal patterning in zebrafish fin appendages
声波刺猬介导斑马鱼鳍附属物骨骼模式的机制
- 批准号:
10645527 - 财政年份:2022
- 资助金额:
$ 4.36万 - 项目类别:
相似海外基金
A platform for rapidly generating live attenuated enterovirus vaccines
快速生成减毒肠道病毒活疫苗的平台
- 批准号:
24K02286 - 财政年份:2024
- 资助金额:
$ 4.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
I-Corps: Translation potential of an efficient method to generate live-attenuated and replication-defective DNA viruses for vaccine development
I-Corps:一种有效方法的转化潜力,可生成用于疫苗开发的减毒活病毒和复制缺陷型 DNA 病毒
- 批准号:
2420924 - 财政年份:2024
- 资助金额:
$ 4.36万 - 项目类别:
Standard Grant
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
- 批准号:
10596047 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
Live attenuated non-transmissible (LANT) Klebsiella pneumoniae vaccines
肺炎克雷伯氏菌减毒非传染性 (LANT) 活疫苗
- 批准号:
10742028 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
Protecting Pigs From Enzootic Pneumonia: Rational Design Of Safe Attenuated Vaccines.
保护猪免受地方性肺炎:安全减毒疫苗的合理设计。
- 批准号:
BB/X017540/1 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
Research Grant
A “Goldilocks” live attenuated poultry vaccine for Infectious Coryza
用于传染性鼻炎的“Goldilocks”家禽减毒活疫苗
- 批准号:
LP210301365 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
Linkage Projects
A novel live-attenuated Zika vaccine with a modified 5'UTR
一种带有改良 5UTR 的新型寨卡减毒活疫苗
- 批准号:
10730832 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
Combating melanoma with an attenuated bacterial therapeutic
用减毒细菌疗法对抗黑色素瘤
- 批准号:
10659841 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
Investigating Host and Viral Factors for Improved Design of Future Live Attenuated Vaccines for IBV
研究宿主和病毒因素以改进未来 IBV 减毒活疫苗的设计
- 批准号:
BB/V016067/1 - 财政年份:2022
- 资助金额:
$ 4.36万 - 项目类别:
Research Grant
L2M NSERC-Bioengineering attenuated Sclerotinia sclerotiorum strains as bioherbicide for cereal production and lawn management
L2M NSERC-生物工程减毒核盘菌菌株作为谷物生产和草坪管理的生物除草剂
- 批准号:
576545-2022 - 财政年份:2022
- 资助金额:
$ 4.36万 - 项目类别:
Idea to Innovation