CORE 3: Modeling Core
核心 3:建模核心
基本信息
- 批准号:10224016
- 负责人:
- 金额:$ 5.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-17 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:BindingBiochemical GeneticsBiologicalCell modelCellsClinicalComplexCryoelectron MicroscopyDNA Sequence AlterationDataDatabasesDevelopmentGene CombinationsGene ProteinsGenesGeneticGenotypeImmune responseInfectionKnowledgeLiteratureLogicMapsMeasuresModelingMolecularNamesOntologyPathway interactionsPerformancePhenotypeProcessProteinsProteomicsRoentgen RaysSeedsStructureSystemTechnologyTherapeuticTherapeutic InterventionTrainingTranslatingValidationX-Ray Crystallographybiological systemscell growthcombinatorialcomputer frameworkdeep neural networkmolecular modelingneural networknovelpathogenprotein complexprotein protein interactionresponsetargeted treatmenttool
项目摘要
CORE 3: MODELING CORE
SUMMARY
Biological knowledge is often modeled in the form of molecular networks, interaction maps consisting of gene-
gene or protein-protein pairwise interactions. Biological systems though are not simply one large pairwise
network, but consist of a deep and dynamic hierarchy of biological subsystems ranging across biological
scales. Here, we move beyond basic interaction maps to instead use molecular interaction data to directly infer
hierarchical subsystems. These plans are enabled by a computational framework called Network-Extracted
Ontologies (NeXO), which we have recently shown is able to capture and substantially extend the known
hierarchy of cellular components and processes recorded by pathway databases such as the Gene Ontology
(GO). First (Aim 1), we will analyze the growing data on molecular networks to infer a Host-Pathogen Gene
Ontology, representing a comprehensive, hierarchical description of the molecular complexes and pathways
important for the host’s response to pathogens. This hierarchical structure will be developed using the protein-
protein interaction data generated in Project 1, backstopped by public network data; it will provide an objective
definition of a cell by systematically identifying its protein modules and their interrelationships. By comparing
this data-derived hierarchy to the literature-curated Gene Ontology (Aim 2), we can identify new subsystems
that respond to pathogens. We will next use this descriptive hierarchy to seed predictive whole-cell models.
Using the tools of deep neural networks, genetic logic will be embedded onto each complex/pathway in the cell
hierarchical structure to model how perturbations to this structure give rise to host phenotypes (Aim 3). The
neural network structure will be set exactly to that of the Host-Pathogen Gene Ontology assembled in Aim 1;
we will then train this neural network to translate the combinatorial genetic perturbations from Project 2 into
predictions of host cell responses. This hierarchy will be not only descriptive but also predictive, connecting
basic knowledge of cellular pathways to a framework for using this knowledge therapeutically. Finally, in Aim
4, we will use various structural, biochemical, genetic and proteomic data generated by Cores using an
integrative modeling approach for the structure determination of host-pathogen protein complexes. Through
execution of these aims, we hope to substantially advance our knowledge of the structural and functional
hierarchy of molecular pathways that host responses to pathogens and provide optimal targets for
therapeutical intervention.
核心 3:建模核心
概括
生物知识通常以分子网络、由基因组成的相互作用图的形式建模。
基因或蛋白质-蛋白质成对相互作用。然而,生物系统不仅仅是一个大的成对的系统
网络,但由生物子系统的深度和动态层次结构组成,范围涵盖生物
秤。在这里,我们超越了基本的相互作用图,而是使用分子相互作用数据来直接推断
分层子系统。这些计划由称为 Network-Extracted 的计算框架启用
我们最近展示的本体(NeXO)能够捕获并大幅扩展已知的知识
由基因本体等通路数据库记录的细胞成分和过程的层次结构
(去)。首先(目标 1),我们将分析分子网络上不断增长的数据以推断宿主病原体基因
本体论,代表分子复合物和途径的全面、分层描述
对于宿主对病原体的反应很重要。这种分层结构将使用蛋白质来开发
项目1生成的蛋白质相互作用数据,由公共网络数据支持;它将提供一个目标
通过系统地识别细胞的蛋白质模块及其相互关系来定义细胞。通过比较
将这种数据派生的层次结构引入文献策划的基因本体论(目标 2),我们可以识别新的子系统
对病原体做出反应。接下来我们将使用这个描述性层次结构来构建预测全细胞模型。
利用深度神经网络的工具,遗传逻辑将被嵌入到细胞中的每个复合体/通路中
层次结构来模拟该结构的扰动如何产生宿主表型(目标 3)。这
神经网络结构将完全按照目标1中组装的宿主-病原体基因本体的结构设置;
然后,我们将训练这个神经网络,将项目 2 中的组合遗传扰动转化为
宿主细胞反应的预测。这种层次结构不仅具有描述性,而且具有预测性、连接性
细胞途径的基本知识,以及在治疗上使用这些知识的框架。最后,在目标
4、我们将使用 Cores 生成的各种结构、生化、遗传和蛋白质组数据
用于确定宿主-病原体蛋白复合物结构的综合建模方法。通过
为了实现这些目标,我们希望大幅提高我们对结构和功能的了解
分子途径的层次结构,承载对病原体的反应并提供最佳靶标
治疗干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREJ SALI其他文献
ANDREJ SALI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREJ SALI', 18)}}的其他基金
CORE 1: Data Management and Bioinformatics Core
核心 1:数据管理和生物信息学核心
- 批准号:
10549998 - 财政年份:2018
- 资助金额:
$ 5.39万 - 项目类别:
TR&D Project 4. The Imaging Stage: Multiscale Spatiotemporal Modeling of Macromolecular Systems in Cellular Neighborhoods
TR
- 批准号:
10401763 - 财政年份:2014
- 资助金额:
$ 5.39万 - 项目类别:
TR&D Project 4. The Imaging Stage: Multiscale Spatiotemporal Modeling of Macromolecular Systems in Cellular Neighborhoods
TR
- 批准号:
10621361 - 财政年份:2014
- 资助金额:
$ 5.39万 - 项目类别:
DEVELOPMENT AND TESTING OF MODELLER, AND RELATED TOOLS, ON THE ALPHA PLATFORM
在 ALPHA 平台上开发和测试 MODELER 及相关工具
- 批准号:
8363599 - 财政年份:2011
- 资助金额:
$ 5.39万 - 项目类别:
DETERMINATION OF THE PSEUDO-ATOMIC STRUCTURE OF NUCLEAR PORE COMPLEX (NPC) COMPO
核孔复合体(NPC)复合物拟原子结构的测定
- 批准号:
8362329 - 财政年份:2011
- 资助金额:
$ 5.39万 - 项目类别:
COMPUTATIONAL MODELING OF THE STRUCTURE OF THE SPINDLE POLE BODY CORE
主轴极体铁芯结构的计算模型
- 批准号:
8365787 - 财政年份:2011
- 资助金额:
$ 5.39万 - 项目类别:
相似海外基金
Biochemical, genetics and molecular biological studies of bacterial PCB degradation pathways
细菌 PCB 降解途径的生化、遗传学和分子生物学研究
- 批准号:
39579-1998 - 财政年份:2001
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Biochemical, genetics and molecular biological studies of bacterial PCB degradation pathways
细菌 PCB 降解途径的生化、遗传学和分子生物学研究
- 批准号:
39579-1998 - 财政年份:2000
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Biochemical, genetics and molecular biological studies of bacterial PCB degradation pathways
细菌 PCB 降解途径的生化、遗传学和分子生物学研究
- 批准号:
39579-1998 - 财政年份:1999
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Biochemical, genetics and molecular biological studies of bacterial PCB degradation pathways
细菌 PCB 降解途径的生化、遗传学和分子生物学研究
- 批准号:
39579-1998 - 财政年份:1998
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Biochemical, genetics and molecular biological studies of bacterial PCB degradation pathways
细菌 PCB 降解途径的生化、遗传学和分子生物学研究
- 批准号:
39579-1994 - 财政年份:1997
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Biochemical, genetics and molecular biological studies of bacterial PCB degradation pathways
细菌 PCB 降解途径的生化、遗传学和分子生物学研究
- 批准号:
39579-1994 - 财政年份:1996
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Biochemical, genetics and molecular biological studies of bacterial PCB degradation pathways
细菌 PCB 降解途径的生化、遗传学和分子生物学研究
- 批准号:
39579-1994 - 财政年份:1995
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Biochemical, genetics and molecular biological studies of bacterial PCB degradation pathways
细菌 PCB 降解途径的生化、遗传学和分子生物学研究
- 批准号:
39579-1994 - 财政年份:1994
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Biochemical, genetics and molecular biological studies of PCB degrada-tion pathways
PCB降解途径的生化、遗传学和分子生物学研究
- 批准号:
39579-1991 - 财政年份:1993
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual
Biochemical, genetics and molecular biological studies of PCB degrada-tion pathways
PCB降解途径的生化、遗传学和分子生物学研究
- 批准号:
39579-1991 - 财政年份:1992
- 资助金额:
$ 5.39万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




