Microtubule bundles in the mitotic spindle: probing how mechanical and functional robustness emerge from molecular architecture
有丝分裂纺锤体中的微管束:探讨分子结构如何产生机械和功能稳健性
基本信息
- 批准号:10226166
- 负责人:
- 金额:$ 36.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectArchitectureAxonBiochemistryBiological ProcessBuilding CodesBundlingCell divisionCellsChromosome SegregationChromosomesCiliaCongenital AbnormalityCouplingCrosslinkerDiseaseEngineeringEnsureEquilibriumFiberFission YeastGoalsIn VitroKinetochoresLeadMalignant NeoplasmsMapsMeasuresMechanicsMicrotubule BundleMicrotubulesMitotic spindleMolecularMolecular ProbesMorphologyPropertySpontaneous abortionStereotypingStructureSumTimeWorkbasedaughter cellflexibilitygenetic informationin vivoinsightmechanical propertiesmolecular scalenovelprogramsreconstitutionresponsetooltransmission process
项目摘要
Project Summary/Abstract
The mitotic spindle is a microtubule-based machine that segregates chromosomes into two new
daughter cells when cells divide. Accurate spindle function is critical: mistakes lead to extra or missing
chromosomes, which are associated with cancer, birth defects, and miscarriage. Spindle function requires
robust coupling of biochemistry and mechanics. Yet, understanding how this self-organizing machine
generates the required forces in the right place at the right time remains a challenge. Our long term goal is to
determine how micron-scale mechanical properties of the spindle emerge from molecular-scale biochemistry.
We focus on microtubule bundles, which provide organization and underpin rigidity in the spindle and in other
microtubule-based structures. We do not understand what material properties bundling molecules impart to
spindle bundles, how their molecular properties allow them to do so, or how these emergent mechanical
properties are tuned for biological functions. To address these questions, we will measure quantitative
readouts of how bundles respond to perturbations that alter mechanics. We take a multi-system approach to
understanding bundle mechanics in mammalian kinetochore-fibers (k-fibers), which attach and segregate
chromosomes; in fission yeast S. pombe spindles, whose stereotyped organization facilitates probing how
specific crosslinker properties affect bundles overall; and in vitro, where we have more precise control.
Our approach is organized into two programs: (1) probing the molecular and mechanical organization of
spindle microtubule bundles, and (2) controlling spindle microtubule bundles to alter function through novel
mechanics. In Program 1, we will determine how k-fiber organization balances competing mechanical
constraints of robust force-transmission for chromosome segregation with flexibility to adapt to changing
spindle morphology. We will also develop new tools to measure force between microtubules within spindle
bundles, determining how these bundles effectively transmit force to achieve their mechanical functions. In
Program 2, we will determine how the geometric and mechanical properties of microtubule crosslinkers impart
bundle-scale properties that are adapted to particular functions. We will create engineered crosslinkers whose
mechanical and geometric properties we will control, and use them to build reconstituted microtubule bundles
in vitro, and to alter bundle properties in vivo. By measuring the response of these bundles to molecular-scale
changes, we will determine how micron-scale properties emerge.
In sum, the proposed work will map how molecular scale parts impart spindle bundles with properties
that balance competing mechanical constraints. In the long term, this approach may lead to new insight into
how altering the cell’s “building code” can be harnessed to target microtubule architectures with key roles in
disease, or to build novel architectures. This approach can extend to understand the emergent mechanics of
microtubule bundle architectures beyond the spindle, such as in cilia and axons.
项目摘要/摘要
有丝分裂主轴是基于微管的机器,将染色体分离为两个新的机器
细胞分裂时子细胞。准确的主轴功能至关重要:错误会导致额外或缺失
与癌症,先天缺陷和流产有关的染色体。主轴功能需要
生物化学和力学的强大耦合。但是,了解这种自组织的机器
在正确的时间在正确位置产生所需的力仍然是一个挑战。我们的长期目标是
确定纺锤体尺度生物化学的微米尺度机械性能。
我们专注于微管束,这些束为主轴和其他方面提供组织和基础
基于微管的结构。我们不了解捆绑分子赋予的物质特性
主轴束,它们的分子特性如何允许它们这样做,或者这些新兴机械如何
对生物学功能进行了调整。为了解决这些问题,我们将衡量定量
读数捆绑包如何响应改变力学的扰动。我们采用多系统的方法
了解哺乳动物动型纤维(K纤维)中的束机械师,它们附着并分离
染色体;在裂变酵母菌S. pombe纺锤体中,其定型组织有助于探测如何
特定的交联属性总体上影响束;在体外,我们拥有更精确的控制。
我们的方法分为两个程序:(1)探测的分子和机械组织
纺锤微管束,(2)控制纺锤微管束以通过新颖的方式改变功能
力学。在节目1中,我们将确定K纤维组织如何平衡竞争机械
强大的力传输对染色体隔离的限制,灵活地适应了变化
纺锤形态。我们还将开发新工具来测量主轴内微管之间的力
捆绑包,确定这些捆绑包如何有效传输力以实现其机械功能。在
程序2,我们将确定微管交联的几何和机械性能如何赋予
适合特定功能的束规范属性。我们将创建工程的交联器
我们将控制机械和几何特性,并使用它们来构建重构的微管束
体外,并在体内改变束性能。通过测量这些束对分子尺度的响应
变化,我们将确定微米级特性如何出现。
总而言之,拟议的工作将绘制分子尺度零件如何赋予特性的主轴束
平衡竞争的机械约束。从长远来看,这种方法可能会导致对
如何利用更改单元格的“建筑代码”来针对微管体系结构,并在
疾病,或建立新型建筑。这种方法可以扩展以了解
微管束架构超出主轴,例如纤毛和轴突。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Williard Elting其他文献
Mapping load-bearing in the mammalian spindle reveals local kinetochore-fiber anchorage that provides mechanical isolation and redundancy
绘制哺乳动物纺锤体的承重图揭示了局部着丝粒纤维锚定,可提供机械隔离和冗余
- DOI:
10.1101/103572 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Mary Williard Elting;Manu Prakash;Dylan B. Udy;S. Dumont - 通讯作者:
S. Dumont
Mary Williard Elting的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Williard Elting', 18)}}的其他基金
Microtubule bundles in the mitotic spindle: probing how mechanical and functional robustness emerge from molecular architecture
有丝分裂纺锤体中的微管束:探讨分子结构如何产生机械和功能稳健性
- 批准号:
10028927 - 财政年份:2020
- 资助金额:
$ 36.6万 - 项目类别:
相似国自然基金
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
- 批准号:42301138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开放空间内部特征对公共生活行为的复合影响效应与使用者感知机理研究
- 批准号:52308052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
市场公平竞争与企业发展:指标测度、影响机理与效应分析
- 批准号:72373155
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
气候变暖对青藏高原高寒草甸土壤病毒多样性和潜在功能的影响
- 批准号:32301407
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高温胁迫交叉锻炼对梭梭幼苗耐旱性影响的分子机理研究
- 批准号:32360079
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 36.6万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 36.6万 - 项目类别:
Preclinical Development of a Novel Therapeutic Agent for Idiopathic Pulmonary Fibrosis
特发性肺纤维化新型治疗剂的临床前开发
- 批准号:
10696538 - 财政年份:2023
- 资助金额:
$ 36.6万 - 项目类别: