Microtubule bundles in the mitotic spindle: probing how mechanical and functional robustness emerge from molecular architecture
有丝分裂纺锤体中的微管束:探讨分子结构如何产生机械和功能稳健性
基本信息
- 批准号:10028927
- 负责人:
- 金额:$ 36.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectArchitectureAxonBiochemistryBiological ProcessBuilding CodesBundlingCell divisionCellsChromosome SegregationChromosomesCiliaCongenital AbnormalityCouplingCrosslinkerDiseaseEngineeringEnsureEquilibriumFiberFission YeastGoalsIn VitroKinetochoresLeadMalignant NeoplasmsMapsMeasuresMechanicsMicrotubule BundleMicrotubulesMitotic spindleMolecularMolecular ProbesMorphologyPropertySpontaneous abortionStereotypingStructureSumTimeWorkbasedaughter cellflexibilitygenetic informationin vivoinsightmechanical propertiesmolecular scalenovelprogramsreconstitutionresponsetooltransmission process
项目摘要
Project Summary/Abstract
The mitotic spindle is a microtubule-based machine that segregates chromosomes into two new
daughter cells when cells divide. Accurate spindle function is critical: mistakes lead to extra or missing
chromosomes, which are associated with cancer, birth defects, and miscarriage. Spindle function requires
robust coupling of biochemistry and mechanics. Yet, understanding how this self-organizing machine
generates the required forces in the right place at the right time remains a challenge. Our long term goal is to
determine how micron-scale mechanical properties of the spindle emerge from molecular-scale biochemistry.
We focus on microtubule bundles, which provide organization and underpin rigidity in the spindle and in other
microtubule-based structures. We do not understand what material properties bundling molecules impart to
spindle bundles, how their molecular properties allow them to do so, or how these emergent mechanical
properties are tuned for biological functions. To address these questions, we will measure quantitative
readouts of how bundles respond to perturbations that alter mechanics. We take a multi-system approach to
understanding bundle mechanics in mammalian kinetochore-fibers (k-fibers), which attach and segregate
chromosomes; in fission yeast S. pombe spindles, whose stereotyped organization facilitates probing how
specific crosslinker properties affect bundles overall; and in vitro, where we have more precise control.
Our approach is organized into two programs: (1) probing the molecular and mechanical organization of
spindle microtubule bundles, and (2) controlling spindle microtubule bundles to alter function through novel
mechanics. In Program 1, we will determine how k-fiber organization balances competing mechanical
constraints of robust force-transmission for chromosome segregation with flexibility to adapt to changing
spindle morphology. We will also develop new tools to measure force between microtubules within spindle
bundles, determining how these bundles effectively transmit force to achieve their mechanical functions. In
Program 2, we will determine how the geometric and mechanical properties of microtubule crosslinkers impart
bundle-scale properties that are adapted to particular functions. We will create engineered crosslinkers whose
mechanical and geometric properties we will control, and use them to build reconstituted microtubule bundles
in vitro, and to alter bundle properties in vivo. By measuring the response of these bundles to molecular-scale
changes, we will determine how micron-scale properties emerge.
In sum, the proposed work will map how molecular scale parts impart spindle bundles with properties
that balance competing mechanical constraints. In the long term, this approach may lead to new insight into
how altering the cell’s “building code” can be harnessed to target microtubule architectures with key roles in
disease, or to build novel architectures. This approach can extend to understand the emergent mechanics of
microtubule bundle architectures beyond the spindle, such as in cilia and axons.
项目总结/摘要
有丝分裂纺锤体是一种基于微管的机器,它将染色体分离成两个新的染色体。
细胞分裂时的子细胞。准确的主轴功能至关重要:错误导致多余或缺失
染色体,这与癌症,出生缺陷和流产有关。主轴功能要求
生物化学和力学的强大耦合。然而,了解这个自组织机器
在适当的时间和适当的地点组建所需的部队仍然是一个挑战。我们的长期目标是
确定纺锤体的微米级机械特性是如何从分子级生物化学中产生的。
我们专注于微管束,它在纺锤体和其他细胞中提供组织和支撑刚性。
微管结构。我们不了解捆绑分子赋予的材料性质,
纺锤体束,它们的分子特性如何允许它们这样做,或者这些新兴的机械
属性被调整为生物功能。为了解决这些问题,我们将量化
光束对改变力学的扰动的反应。我们采用多系统方法,
理解哺乳动物的运动舞蹈纤维(k纤维)中的束力学,
染色体;裂殖酵母S. pombe纺锤体,其定型的组织有助于探索如何
具体的交联剂性能影响束整体;和在体外,我们有更精确的控制。
我们的方法分为两个程序:(1)探索分子和机械组织的
纺锤体微管束,和(2)通过新的方法控制纺锤体微管束改变功能
力学在方案1中,我们将确定k纤维组织如何平衡竞争机械
具有适应变化的灵活性的染色体分离的鲁棒力传递约束
纺锤体形态我们还将开发新的工具来测量纺锤体内微管之间的力
束,确定这些束如何有效地传递力,以实现其机械功能。在
程序2,我们将确定如何几何和机械性能的微管交联剂传授
适合特定功能的捆绑规模属性。我们将创造工程交联剂,
我们将控制机械和几何性质,并使用它们来构建重组的微管束
在体外,并在体内改变束特性。通过测量这些束对分子尺度的反应,
变化,我们将确定微米级特性如何出现。
总之,拟议的工作将映射分子尺度部分如何赋予纺锤体束特性
来平衡相互竞争的机械约束。从长远来看,这种方法可能会导致新的见解,
如何改变细胞的“建筑代码”可以利用目标微管结构的关键作用,
疾病,或者建造新的建筑。这种方法可以扩展到理解
微管束结构超出纺锤体,如纤毛和轴突。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Williard Elting其他文献
Mapping load-bearing in the mammalian spindle reveals local kinetochore-fiber anchorage that provides mechanical isolation and redundancy
绘制哺乳动物纺锤体的承重图揭示了局部着丝粒纤维锚定,可提供机械隔离和冗余
- DOI:
10.1101/103572 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Mary Williard Elting;Manu Prakash;Dylan B. Udy;S. Dumont - 通讯作者:
S. Dumont
Mary Williard Elting的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Williard Elting', 18)}}的其他基金
Microtubule bundles in the mitotic spindle: probing how mechanical and functional robustness emerge from molecular architecture
有丝分裂纺锤体中的微管束:探讨分子结构如何产生机械和功能稳健性
- 批准号:
10226166 - 财政年份:2020
- 资助金额:
$ 36.6万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 36.6万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 36.6万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 36.6万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 36.6万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 36.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 36.6万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 36.6万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 36.6万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 36.6万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 36.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




