Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice
自由活动小鼠的神经活动和自然社会行为的多模态综合分析
基本信息
- 批准号:10226273
- 负责人:
- 金额:$ 41.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAdultAffectAmygdaloid structureAnimal BehaviorAnimal ModelAnimalsAreaBehaviorBehavior ControlBehavioralBehavioral AssayBehavioral ModelBenchmarkingBiological AssayBrainBrain regionCalciumCell NucleusClassificationCollectionCommunitiesComplexComputer Vision SystemsComputer softwareComputing MethodologiesControl AnimalDataData SetDecision MakingDevelopmentEnvironmentFutureGoalsGrainHomeHourHumanHypothalamic structureImageJointsLinkMachine LearningManualsMeasurementMeasuresMental DepressionMental disordersMethodsModelingMotivationMovementMusMutationNational Institute of Mental HealthNeuronal DysfunctionNeurosciencesPerformancePopulation DynamicsPsychological TransferPublic HealthReciprocal Social InteractionReproducibilityResearchResolutionResourcesRoleSchizophreniaSocial BehaviorSocial IdentificationSocial InteractionStructureSupervisionSystemTechniquesTestingTimeTrainingTriad Acrylic ResinVariantWorkautism spectrum disorderbasebehavioral studybody positioncollaborative approachcomputerized toolsdesignexperienceexperimental studyflexibilityimprovedinnovationinsightinterestmachine learning algorithmmathematical modelmultimodalityneural circuitneural correlateneuromechanismneuroregulationnovelrelating to nervous systemsocialsocial defeatsocial structuretemporal measurementtheoriestooluser-friendly
项目摘要
Project Summary/Abstract
This proposal responds to an NIMH notice NOT-MH-18-036 aimed at the development and study of novel,
computationally defined behavioral assays, and at applying theory and mathematical modeling to better capture
the richness of complex, naturalistic behaviors. Specifically, we aim to develop novel computational tools for
analyzing social behaviors in freely moving mice, and relating those identified behaviors to neural circuit activity
in brain regions that govern the expression of those behaviors. Social behavior is affected in many human
psychiatric disorders, such as autism, schizophrenia, and depression. We propose an interdisciplinary,
collaborative approach to fill two major gaps that present a barrier to studies of social behavior: 1) the lack
of quantitative and high-resolution descriptions of naturalistic social behaviors in freely moving animals, and 2)
the difficulty of relating neural activity recorded in deep subcortical regions that govern such behaviors, such as
the hypothalamus and extended amygdala, to animals' actions or to models of behavioral control. Our objective
is to create a computational behavior analysis platform that integrates automated measurement of naturalistic
social behavior, synchronous large-scale recording or imaging of neural activity, and apply these to a novel assay
to investigate social behavioral decision-making. The central objective of this proposal is to extend our Mouse
Action Recognition System (MARS) to create a platform that allows facile training of supervised and
unsupervised behavior classifiers, quantitative correlation with simultaneously acquired neural recording or
imaging data, and which can be flexibly adapted to additional behavior assays. The rationale for this approach
is that fine-grained quantification of social behavior, and its correlation with neural recordings, is necessary to
form and test theories of behavioral control by subcortical brain regions. While automated tracking and “pose”
estimation software such as DeepLabCut have made tracking of animals' body positions more feasible, the
identification of social behaviors from pose data is a non-trivial problem, requiring a separate computational
approach that takes into account the relative movements of multiple animals over time. To achieve our objective,
we will broaden the palette of social behaviors MARS can detect using machine learning and generative models
(Aim 1), develop methods to relate those behaviors to neural activity (Aim 2), and extend MARS to additional
assays to study neural correlates of social decision-making. This contribution is significant because it will create
a resource that will transform our ability to study micro- and meso-scale subcortical circuits controlling social
behavior. The contribution is innovative because it combines expertise from circuit neuroscience and computer
vision/machine learning to create new tools for understanding the link between neural activity and behavior, in a
context that is relevant to understanding dysfunctions of neural circuits that underlie human psychiatric disorders.
项目摘要/摘要
该建议响应了旨在开发和研究小说的NIMH通知NOT-MH-18-036,
通过计算定义的行为分析,以及应用理论和数学模型更好地捕获
复杂的自然主义行为的丰富性。具体地说,我们的目标是开发新的计算工具
分析自由活动的小鼠的社会行为,并将这些识别的行为与神经回路活动联系起来
在控制这些行为表达的大脑区域。许多人的社会行为受到影响
精神障碍,如自闭症、精神分裂症和抑郁症。我们建议建立一个跨学科的,
填补社会行为研究障碍的两个主要空白的协作方法:1)缺乏
对自由活动的动物的自然主义社会行为的定量和高分辨率描述,以及2)
很难将皮层下深层区域记录的神经活动与控制此类行为的活动联系起来,例如
下丘脑和延伸的杏仁核,动物的行为或行为控制的模型。我们的目标
是创建一个计算行为分析平台,集成自然主义的自动测量
社会行为,神经活动的同步大规模记录或成像,并将这些应用于一种新的分析
研究社会行为决策。这项提议的中心目标是扩大我们的鼠标
行动识别系统(MARS)创建了一个平台,允许对受监督和
非监督行为分类器,与同时获取的神经记录或
成像数据,并且可以灵活地适应额外的行为分析。这种方法的基本原理是
社会行为的细粒度量化及其与神经记录的相关性对于
大脑皮质下区域行为控制的形成和测试理论。在自动跟踪和“摆姿势”的同时
DeepLabCut等估计软件使追踪动物身体位置变得更加可行,
从姿势数据中识别社会行为不是一个简单的问题,需要单独的计算
一种考虑到多个动物随时间的相对运动的方法。为了实现我们的目标,
我们将使用机器学习和产生式模型拓宽火星可以检测到的社会行为的调色板
(目标1),开发将这些行为与神经活动联系起来的方法(目标2),并将MARS扩展到其他
研究社会决策的神经关联的方法。这一贡献意义重大,因为它将创造
这一资源将改变我们研究控制社会的微尺度和中尺度皮层下回路的能力
行为。这项贡献是创新的,因为它结合了电路神经科学和计算机的专业知识
视觉/机器学习为理解神经活动和行为之间的联系创造了新的工具,在
与理解人类精神障碍背后的神经回路功能障碍相关的背景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David J Anderson其他文献
The N-terminal presequence from F1-ATPase β-subunit of Nicotiana plumbaginifolia efficiently targets green fluorescent fusion protein to the mitochondria in diverse commercial crops.
来自白花烟草 F1-ATPase β-亚基的 N 端前序列有效地将绿色荧光融合蛋白靶向多种经济作物的线粒体。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:3
- 作者:
A. Gnanasambandam;David J Anderson;M. P. Purnell;L. Nielsen;S. Brumbley - 通讯作者:
S. Brumbley
Mild and moderate dyskaryosis: can women be selected for colposcopy on the basis of social criteria?
轻度和中度核异常:可以根据社会标准选择女性进行阴道镜检查吗?
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
David J Anderson;G. Flannelly;Henry C Kitchener;Peter M Fisher;Evelyn M Mann;Marion K Campbell;Allan Templeton;Harris Birthright;Research Centre;A. Infirmary;Foresterhill Aberdeen;J. AB92ZBDavid;M. Anderson;C. Flannelly;Kitchener - 通讯作者:
Kitchener
Heterologous C-terminal signals effectively target fluorescent fusion proteins to leaf peroxisomes in diverse plant species.
异源 C 端信号有效地将荧光融合蛋白靶向不同植物物种的叶过氧化物酶体。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:4.3
- 作者:
A. Gnanasambandam;David J Anderson;E. Mills;S. Brumbley - 通讯作者:
S. Brumbley
Synthesis of Short-Chain-Length/Medium-Chain Length Polyhydroxyalkanoate (PHA) Copolymers in Peroxisomes of Transgenic Sugarcane Plants
转基因甘蔗植物过氧化物酶体中短链长度/中链长度聚羟基脂肪酸酯(PHA)共聚物的合成
- DOI:
10.1007/s12042-011-9080-7 - 发表时间:
2011 - 期刊:
- 影响因子:2
- 作者:
David J Anderson;A. Gnanasambandam;E. Mills;M. O'Shea;L. Nielsen;S. Brumbley - 通讯作者:
S. Brumbley
NociceptorsSense Extracellular ATP and Are Putative Cutaneous Sensory Neurons Expressing the Mrgprd
伤害感受器感知细胞外 ATP,并且是表达 Mrgprd 的推定皮肤感觉神经元
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
J. Zylka;David J Anderson;E. McCleskey;H. Lamotte;Xinzhong Dong;Qin Liu;Parul Sikand;Chao Ma;Zongxiang Tang;Liang Han;Zhe Li;Shuohao Sun;Leah A. Pogorzala;S. Mishra;M. Hoon;H. J. Solinski;T. Gudermann;A. Breit;Coupled Receptors - 通讯作者:
Coupled Receptors
David J Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David J Anderson', 18)}}的其他基金
Circuit basis of social behavior decision-making in a subcortical network
皮层下网络社会行为决策的电路基础
- 批准号:
10300937 - 财政年份:2021
- 资助金额:
$ 41.63万 - 项目类别:
Circuit basis of social behavior decision-making in a subcortical network
皮层下网络社会行为决策的电路基础
- 批准号:
10461937 - 财政年份:2021
- 资助金额:
$ 41.63万 - 项目类别:
Circuit basis of social behavior decision-making in a subcortical network
皮层下网络社会行为决策的电路基础
- 批准号:
10685483 - 财政年份:2021
- 资助金额:
$ 41.63万 - 项目类别:
Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice
自由活动小鼠的神经活动和自然社会行为的多模态综合分析
- 批准号:
10037486 - 财政年份:2020
- 资助金额:
$ 41.63万 - 项目类别:
Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice
自由活动小鼠的神经活动和自然社会行为的多模态综合分析
- 批准号:
10415149 - 财政年份:2020
- 资助金额:
$ 41.63万 - 项目类别:
Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice
自由活动小鼠的神经活动和自然社会行为的多模态综合分析
- 批准号:
10629355 - 财政年份:2020
- 资助金额:
$ 41.63万 - 项目类别:
Multimodal and Supramodal processing of threatening emotional stimuli
威胁性情绪刺激的多模态和超模态处理
- 批准号:
10093134 - 财政年份:2017
- 资助金额:
$ 41.63万 - 项目类别:
Development of a scalable methodology for imaging neuropeptide release in the brain
开发一种可扩展的大脑神经肽释放成像方法
- 批准号:
9056190 - 财政年份:2015
- 资助金额:
$ 41.63万 - 项目类别:
Development of a scalable methodology for imaging neuropeptide release in the brain
开发一种可扩展的大脑神经肽释放成像方法
- 批准号:
9146349 - 财政年份:2015
- 资助金额:
$ 41.63万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 41.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 41.63万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 41.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 41.63万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 41.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 41.63万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 41.63万 - 项目类别:
Standard Grant