Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice

自由活动小鼠的神经活动和自然社会行为的多模态综合分析

基本信息

  • 批准号:
    10415149
  • 负责人:
  • 金额:
    $ 41.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract This proposal responds to an NIMH notice NOT-MH-18-036 aimed at the development and study of novel, computationally defined behavioral assays, and at applying theory and mathematical modeling to better capture the richness of complex, naturalistic behaviors. Specifically, we aim to develop novel computational tools for analyzing social behaviors in freely moving mice, and relating those identified behaviors to neural circuit activity in brain regions that govern the expression of those behaviors. Social behavior is affected in many human psychiatric disorders, such as autism, schizophrenia, and depression. We propose an interdisciplinary, collaborative approach to fill two major gaps that present a barrier to studies of social behavior: 1) the lack of quantitative and high-resolution descriptions of naturalistic social behaviors in freely moving animals, and 2) the difficulty of relating neural activity recorded in deep subcortical regions that govern such behaviors, such as the hypothalamus and extended amygdala, to animals' actions or to models of behavioral control. Our objective is to create a computational behavior analysis platform that integrates automated measurement of naturalistic social behavior, synchronous large-scale recording or imaging of neural activity, and apply these to a novel assay to investigate social behavioral decision-making. The central objective of this proposal is to extend our Mouse Action Recognition System (MARS) to create a platform that allows facile training of supervised and unsupervised behavior classifiers, quantitative correlation with simultaneously acquired neural recording or imaging data, and which can be flexibly adapted to additional behavior assays. The rationale for this approach is that fine-grained quantification of social behavior, and its correlation with neural recordings, is necessary to form and test theories of behavioral control by subcortical brain regions. While automated tracking and “pose” estimation software such as DeepLabCut have made tracking of animals' body positions more feasible, the identification of social behaviors from pose data is a non-trivial problem, requiring a separate computational approach that takes into account the relative movements of multiple animals over time. To achieve our objective, we will broaden the palette of social behaviors MARS can detect using machine learning and generative models (Aim 1), develop methods to relate those behaviors to neural activity (Aim 2), and extend MARS to additional assays to study neural correlates of social decision-making. This contribution is significant because it will create a resource that will transform our ability to study micro- and meso-scale subcortical circuits controlling social behavior. The contribution is innovative because it combines expertise from circuit neuroscience and computer vision/machine learning to create new tools for understanding the link between neural activity and behavior, in a context that is relevant to understanding dysfunctions of neural circuits that underlie human psychiatric disorders.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David J Anderson其他文献

The N-terminal presequence from F1-ATPase β-subunit of Nicotiana plumbaginifolia efficiently targets green fluorescent fusion protein to the mitochondria in diverse commercial crops.
来自白花烟草 F1-ATPase β-亚基的 N 端前序列有效地将绿色荧光融合蛋白靶向多种经济作物的线粒体。
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    3
  • 作者:
    A. Gnanasambandam;David J Anderson;M. P. Purnell;L. Nielsen;S. Brumbley
  • 通讯作者:
    S. Brumbley
Mild and moderate dyskaryosis: can women be selected for colposcopy on the basis of social criteria?
轻度和中度核异常:可以根据社会标准选择女性进行阴道镜检查吗?
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David J Anderson;G. Flannelly;Henry C Kitchener;Peter M Fisher;Evelyn M Mann;Marion K Campbell;Allan Templeton;Harris Birthright;Research Centre;A. Infirmary;Foresterhill Aberdeen;J. AB92ZBDavid;M. Anderson;C. Flannelly;Kitchener
  • 通讯作者:
    Kitchener
Heterologous C-terminal signals effectively target fluorescent fusion proteins to leaf peroxisomes in diverse plant species.
异源 C 端信号有效地将荧光融合蛋白靶向不同植物物种的叶过氧化物酶体。
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    A. Gnanasambandam;David J Anderson;E. Mills;S. Brumbley
  • 通讯作者:
    S. Brumbley
Synthesis of Short-Chain-Length/Medium-Chain Length Polyhydroxyalkanoate (PHA) Copolymers in Peroxisomes of Transgenic Sugarcane Plants
转基因甘蔗植物过氧化物酶体中短链长度/中链长度聚羟基脂肪酸酯(PHA)共聚物的合成
  • DOI:
    10.1007/s12042-011-9080-7
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2
  • 作者:
    David J Anderson;A. Gnanasambandam;E. Mills;M. O'Shea;L. Nielsen;S. Brumbley
  • 通讯作者:
    S. Brumbley
NociceptorsSense Extracellular ATP and Are Putative Cutaneous Sensory Neurons Expressing the Mrgprd
伤害感受器感知细胞外 ATP,并且是表达 Mrgprd 的推定皮肤感觉神经元
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Zylka;David J Anderson;E. McCleskey;H. Lamotte;Xinzhong Dong;Qin Liu;Parul Sikand;Chao Ma;Zongxiang Tang;Liang Han;Zhe Li;Shuohao Sun;Leah A. Pogorzala;S. Mishra;M. Hoon;H. J. Solinski;T. Gudermann;A. Breit;Coupled Receptors
  • 通讯作者:
    Coupled Receptors

David J Anderson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David J Anderson', 18)}}的其他基金

Imaging neuromodulation in the brain
大脑神经调节成像
  • 批准号:
    10543730
  • 财政年份:
    2022
  • 资助金额:
    $ 41.63万
  • 项目类别:
Circuit basis of social behavior decision-making in a subcortical network
皮层下网络社会行为决策的电路基础
  • 批准号:
    10300937
  • 财政年份:
    2021
  • 资助金额:
    $ 41.63万
  • 项目类别:
Circuit basis of social behavior decision-making in a subcortical network
皮层下网络社会行为决策的电路基础
  • 批准号:
    10461937
  • 财政年份:
    2021
  • 资助金额:
    $ 41.63万
  • 项目类别:
Circuit basis of social behavior decision-making in a subcortical network
皮层下网络社会行为决策的电路基础
  • 批准号:
    10685483
  • 财政年份:
    2021
  • 资助金额:
    $ 41.63万
  • 项目类别:
Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice
自由活动小鼠的神经活动和自然社会行为的多模态综合分析
  • 批准号:
    10226273
  • 财政年份:
    2020
  • 资助金额:
    $ 41.63万
  • 项目类别:
Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice
自由活动小鼠的神经活动和自然社会行为的多模态综合分析
  • 批准号:
    10037486
  • 财政年份:
    2020
  • 资助金额:
    $ 41.63万
  • 项目类别:
Multimodal, integrated analysis of neural activity and naturalistic social behavior in freely moving mice
自由活动小鼠的神经活动和自然社会行为的多模态综合分析
  • 批准号:
    10629355
  • 财政年份:
    2020
  • 资助金额:
    $ 41.63万
  • 项目类别:
Multimodal and Supramodal processing of threatening emotional stimuli
威胁性情绪刺激的多模态和超模态处理
  • 批准号:
    10093134
  • 财政年份:
    2017
  • 资助金额:
    $ 41.63万
  • 项目类别:
Development of a scalable methodology for imaging neuropeptide release in the brain
开发一种可扩展的大脑神经肽释放成像方法
  • 批准号:
    9056190
  • 财政年份:
    2015
  • 资助金额:
    $ 41.63万
  • 项目类别:
Development of a scalable methodology for imaging neuropeptide release in the brain
开发一种可扩展的大脑神经肽释放成像方法
  • 批准号:
    9146349
  • 财政年份:
    2015
  • 资助金额:
    $ 41.63万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 41.63万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 41.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 41.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 41.63万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 41.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 41.63万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 41.63万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 41.63万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 41.63万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 41.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了