Beyond PheWAS: Recognition of Phenotype Patterns for Discovery and Translation

超越 PheWAS:识别表型模式以进行发现和翻译

基本信息

  • 批准号:
    10226268
  • 负责人:
  • 金额:
    $ 62.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Genomic medicine offers hope for improved diagnostic methods and for more effective, patient specific therapies. Genome-wide associated studies (GWAS) elucidate genetic markers that improve clinical understanding of risks and mechanisms for many diseases and conditions and that may ultimately guide diagnosis and therapy on a patient-specific basis. The previous two cycles of this effort (2011-2014 and 2014-2018) introduced the phenome-wide association study (PheWAS) as a systematic and efficient approach to identify novel disease-variant associations and discover pleiotropy using electronic health records (EHRs). This proposal will develop novel methods to identify associations based on patterns of phenotypes using a phenotype risk score (PheRS) methodology to systematically search for the influence of Mendelian disease variants on common disease. By doing so, it also creates a way to assess pathogenicity for rare variants, and will identify patients at highest risk of having undiagnosed Mendelian disease. The project is enabled by large DNA biobanks coupled to de-identified copies of EHR. This project has four specific aims. First, we will develop and validate PheRS for assessment of variant pathogenicity by leveraging billing codes, laboratory data, and NLP features in its predictive algorithms. The second aim is to apply PheRS in huge populations to create a robust repository of rare variant associations in diverse populations (eMERGE Network and large national cohorts, which could approach 2 million people with genotype data). The third aim is to assess Mendelian disease penetrance and evaluate PheRS as a tool to identify patients at risk for undiagnosed Mendelian disease. The fourth aim is make these tools and resources broadly available to aid in variant interpretation and facilitate others running PheRS. The tools generated from this project will validate new approaches to interpreting the function of rare variants, improve basic understanding of Mendelian disease, greatly enhance our understanding of the contribution of Mendelian disease variants to common disease and traits, and offers a potential approach to identify subpopulations of patients for whom new therapies may offer benefit.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lisa Bastarache其他文献

Lisa Bastarache的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lisa Bastarache', 18)}}的其他基金

Translating the Clinical Knowledge of Mendelian Diseases to Real-world EHR Data to Improve Identification of Undiagnosed Patients
将孟德尔疾病的临床知识转化为现实世界的 EHR 数据,以提高对未确诊患者的识别
  • 批准号:
    10704743
  • 财政年份:
    2022
  • 资助金额:
    $ 62.37万
  • 项目类别:
Translating the Clinical Knowledge of Mendelian Diseases to Real-world EHR Data to Improve Identification of Undiagnosed Patients
将孟德尔疾病的临床知识转化为现实世界的 EHR 数据,以提高对未确诊患者的识别
  • 批准号:
    10518136
  • 财政年份:
    2022
  • 资助金额:
    $ 62.37万
  • 项目类别:
Beyond PheWAS: Recognition of Phenotype Patterns for Discovery and Translation
超越 PheWAS:识别表型模式以进行发现和翻译
  • 批准号:
    10468287
  • 财政年份:
    2011
  • 资助金额:
    $ 62.37万
  • 项目类别:
Beyond PheWAS: Recognition of Phenotype Patterns for Discovery and Translation
超越 PheWAS:识别表型模式以进行发现和翻译
  • 批准号:
    9755501
  • 财政年份:
    2011
  • 资助金额:
    $ 62.37万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 62.37万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 62.37万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 62.37万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 62.37万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 62.37万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 62.37万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 62.37万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 62.37万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 62.37万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 62.37万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了