Beyond PheWAS: Recognition of Phenotype Patterns for Discovery and Translation
超越 PheWAS:识别表型模式以进行发现和翻译
基本信息
- 批准号:10468287
- 负责人:
- 金额:$ 58.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAlgorithmsAll of Us Research ProgramBenignCatalogsClinVarClinicalCodeCoupledDNADataData SetDiagnosisDiagnostic ProcedureDiseaseElectronic Health RecordElectronic Medical Records and Genomics NetworkEvaluationFutureGeneral PracticesGenesGeneticGenetic MarkersGenomic medicineGenotypeGoldGrantHealth SurveysHereditary DiseaseHumanHuman Genome ProjectIn VitroIndividualInternationalLabelLaboratoriesLinkMapsMeasuresMedicalMedical GeneticsMedicineMendelian disorderMethodological StudiesMethodologyMethodsMichiganOnline Mendelian Inheritance In ManOntologyOutcomeParticipantPathogenicityPatientsPatternPenetrancePerformancePersonsPharmaceutical PreparationsPhasePhenotypePopulationPopulation HeterogeneityPrognosisReportingResearchResourcesRiskRunningScoring MethodSingle Nucleotide PolymorphismSiteSurveysTestingTranslational ResearchTranslationsValidationVariantWeightWorkbasebiobankcase controlclinical careclinical diagnosisclinical implementationcohortdata modelingdata standardsdiverse dataexomeexome sequencinggenetic testinggenome wide association studygenome-widehigh riskimprovedindividualized medicinenovelnovel strategiesnovel therapeuticspatient subsetspersonalized medicinepersonalized screeningphenomephenotypic datapleiotropismprecision medicineprediction algorithmrare variantrepositoryscreening guidelinesside effecttargeted treatmenttooltraittreatment strategyweb site
项目摘要
Project Summary
Genomic medicine offers hope for improved diagnostic methods and for more effective, patient
specific therapies. Genome-wide associated studies (GWAS) elucidate genetic markers that
improve clinical understanding of risks and mechanisms for many diseases and conditions and
that may ultimately guide diagnosis and therapy on a patient-specific basis. The previous two
cycles of this effort (2011-2014 and 2014-2018) introduced the phenome-wide association study
(PheWAS) as a systematic and efficient approach to identify novel disease-variant associations
and discover pleiotropy using electronic health records (EHRs). This proposal will develop novel
methods to identify associations based on patterns of phenotypes using a phenotype risk score
(PheRS) methodology to systematically search for the influence of Mendelian disease variants
on common disease. By doing so, it also creates a way to assess pathogenicity for rare variants,
and will identify patients at highest risk of having undiagnosed Mendelian disease. The project is
enabled by large DNA biobanks coupled to de-identified copies of EHR. This project has four
specific aims. First, we will develop and validate PheRS for assessment of variant pathogenicity
by leveraging billing codes, laboratory data, and NLP features in its predictive algorithms. The
second aim is to apply PheRS in huge populations to create a robust repository of rare variant
associations in diverse populations (eMERGE Network and large national cohorts, which could
approach 2 million people with genotype data). The third aim is to assess Mendelian disease
penetrance and evaluate PheRS as a tool to identify patients at risk for undiagnosed Mendelian
disease. The fourth aim is make these tools and resources broadly available to aid in variant
interpretation and facilitate others running PheRS. The tools generated from this project will
validate new approaches to interpreting the function of rare variants, improve basic
understanding of Mendelian disease, greatly enhance our understanding of the contribution of
Mendelian disease variants to common disease and traits, and offers a potential approach to
identify subpopulations of patients for whom new therapies may offer benefit.
项目摘要
基因组医学为改进诊断方法和更有效的、患者
具体治疗。全基因组相关研究(GWAS)阐明了遗传标记,
提高对许多疾病和病症的风险和机制的临床理解,
这最终可能会根据患者的具体情况指导诊断和治疗。前两
这一努力的周期(2011-2014年和2014-2018年)引入了全表型关联研究
(PheWAS)作为一种系统和有效的方法,以确定新的疾病变异的关联
并利用电子健康记录(EHR)发现多效性。该提案将开发新的
使用表型风险评分基于表型模式鉴定关联的方法
(PheRS)方法系统地搜索孟德尔疾病变体的影响
关于常见病通过这样做,它也创造了一种评估罕见变异致病性的方法,
并将识别出患有未确诊的孟德尔氏病的风险最高的患者。该项目
通过大型DNA生物库与去识别的EHR副本相结合。该项目有四个
具体目标。首先,我们将开发和验证PheRS用于评估变异致病性
通过在其预测算法中利用计费代码、实验室数据和NLP功能。的
第二个目标是将PheRS应用于大量人群,以创建一个强大的稀有变异库
不同人群中的协会(eMERGE网络和大型国家队列,
接近200万人的基因型数据)。第三个目标是评估孟德尔疾病
筛选和评估PheRS作为识别未确诊孟德尔遗传病风险患者的工具
疾病第四个目标是广泛提供这些工具和资源,
解释和促进其他人运行PheRS。该项目产生的工具将
验证新的方法来解释罕见变异的功能,改善基本的
对孟德尔疾病的了解,大大提高了我们的认识,
孟德尔疾病的变异,以共同的疾病和性状,并提供了一个潜在的方法,
确定新疗法可能带来益处的患者亚群。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predictive Accuracy of a Polygenic Risk Score for Postoperative Atrial Fibrillation After Cardiac Surgery.
- DOI:10.1161/circgen.120.003269
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Kertai MD;Mosley JD;He J;Ramakrishnan A;Abdelmalak MJ;Hong Y;Shoemaker MB;Roden DM;Bastarache L
- 通讯作者:Bastarache L
Penetrance of Deleterious Clinical Variants.
- DOI:10.1001/jama.2022.4631
- 发表时间:2022-05-17
- 期刊:
- 影响因子:120.7
- 作者:Bastarache, Lisa;Peterson, Josh F.
- 通讯作者:Peterson, Josh F.
Genetic predisposition may not improve prediction of cardiac surgery-associated acute kidney injury.
- DOI:10.3389/fgene.2023.1094908
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Douville, Nicholas J.;Larach, Daniel B.;Lewis, Adam;Bastarache, Lisa;Pandit, Anita;He, Jing;Heung, Michael;Mathis, Michael;Wanderer, Jonathan P.;Kheterpal, Sachin;Surakka, Ida;Kertai, Miklos D.
- 通讯作者:Kertai, Miklos D.
LabWAS: Novel findings and study design recommendations from a meta-analysis of clinical labs in two independent biobanks.
- DOI:10.1371/journal.pgen.1009077
- 发表时间:2020-11
- 期刊:
- 影响因子:4.5
- 作者:Goldstein JA;Weinstock JS;Bastarache LA;Larach DB;Fritsche LG;Schmidt EM;Brummett CM;Kheterpal S;Abecasis GR;Denny JC;Zawistowski M
- 通讯作者:Zawistowski M
Use of Genetic Variants Related to Antihypertensive Drugs to Inform on Efficacy and Side Effects
- DOI:10.1161/circulationaha.118.038814
- 发表时间:2019-07-23
- 期刊:
- 影响因子:37.8
- 作者:Gill, Dipender;Georgakis, Marios K.;Tzoulaki, Ioanna
- 通讯作者:Tzoulaki, Ioanna
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lisa Bastarache其他文献
Lisa Bastarache的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lisa Bastarache', 18)}}的其他基金
Translating the Clinical Knowledge of Mendelian Diseases to Real-world EHR Data to Improve Identification of Undiagnosed Patients
将孟德尔疾病的临床知识转化为现实世界的 EHR 数据,以提高对未确诊患者的识别
- 批准号:
10704743 - 财政年份:2022
- 资助金额:
$ 58.62万 - 项目类别:
Translating the Clinical Knowledge of Mendelian Diseases to Real-world EHR Data to Improve Identification of Undiagnosed Patients
将孟德尔疾病的临床知识转化为现实世界的 EHR 数据,以提高对未确诊患者的识别
- 批准号:
10518136 - 财政年份:2022
- 资助金额:
$ 58.62万 - 项目类别:
Beyond PheWAS: Recognition of Phenotype Patterns for Discovery and Translation
超越 PheWAS:识别表型模式以进行发现和翻译
- 批准号:
10226268 - 财政年份:2011
- 资助金额:
$ 58.62万 - 项目类别:
Beyond PheWAS: Recognition of Phenotype Patterns for Discovery and Translation
超越 PheWAS:识别表型模式以进行发现和翻译
- 批准号:
9755501 - 财政年份:2011
- 资助金额:
$ 58.62万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 58.62万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 58.62万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 58.62万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 58.62万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 58.62万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 58.62万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 58.62万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 58.62万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 58.62万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 58.62万 - 项目类别:
Research Grant