Translating the Clinical Knowledge of Mendelian Diseases to Real-world EHR Data to Improve Identification of Undiagnosed Patients

将孟德尔疾病的临床知识转化为现实世界的 EHR 数据,以提高对未确诊患者的识别

基本信息

  • 批准号:
    10518136
  • 负责人:
  • 金额:
    $ 102.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The last two decades have seen extraordinary advances in the cost, accessibility, and interpretability of genetic testing. In the context of this astonishing progress, it is striking that for many rare genetic diseases, diagnostic delay – the time between onset of symptoms and a diagnosis – has not improved. Current health care services are unable to effectively identify patients that would benefit most from genetic testing. As a result, many patients affected by genetic disease are not diagnosed for years after symptoms develop, or are never diagnosed at all, leading to costly diagnostic odysseys, health care disparities in genetic services, and preventable morbidity and mortality for those with conditions that have an effective, targeted treatment. Much of what we know about genetic disease is based on studies of individuals and their families. This has proven to be a powerful method for discerning the clinical characteristics of genetic disease, generating one of the most enduring and useful resources in medical genetics: the online Mendelian inheritance in man (OMIM). However, clinical descriptions in OMIM do not always match the way diseases are described in real- world EHR data. To improve our ability to use genetic testing effectively, we can learn, at scale, from the data clinically captured while testing and diagnosing patients. EHRs provides an opportunity to study genetic disease from a new perspective, enabling scalable methods that augment existing the knowledge base to include phenotypes observed in real-world health care data. This proposal builds on our prior work curating genetic testing data from the EHR and developing tools to identify undiagnosed patients from characteristic genetic disease profiles. Specifically, we have built a database of clinical genetic testing information extracted from the EHR for over 20,000 individuals, with detailed information regarding test results, variant interpretation, and diagnosis. From this resource, we can define EHR-based cases series of individuals with genetically-confirmed clinical diagnoses of genetic disease. We will use a data-driven approach to discern characteristic phenotypes from the EHR-based case series, and merge these results with clinical descriptions from OMIM. This approach seeks to translate the curated, durable knowledge cataloged in OMIM to a portable and scalable product that can layered on any set of EHRs to identify undiagnosed patients with genetic disease. The ultimate goals of this proposal are leverage these data and tools to 1) translate and add to clinical curations of genetic diseases using real world EHR data, 2) assess diagnostic yield of EHR-based tools that identify undiagnosed patients and 3) characterize the contribution of demographic and phenotypic features that lead to earlier or later diagnosis.
项目摘要 在过去的二十年里,在成本、可访问性和可解释性方面取得了非凡的进步, 基因检测在这一惊人进展的背景下,令人震惊的是,对于许多罕见的遗传疾病, 诊断延迟-症状出现和诊断之间的时间-没有改善。当前健康 保健服务部门无法有效地确定哪些病人最能从基因检测中受益。因此,在本发明中, 许多受遗传病影响的患者在症状出现后多年未被诊断出来,或者从未被诊断出来。 诊断,导致昂贵的诊断奥德赛,遗传服务的医疗保健差距, 可预防的发病率和死亡率,为那些有条件的有效,有针对性的治疗。 我们对遗传疾病的了解大部分是基于对个人及其家庭的研究。这 已被证明是一种强有力的方法,用于辨别遗传性疾病的临床特征, 医学遗传学中最持久和最有用的资源之一:人类的在线孟德尔遗传 (OMIM)。然而,OMIM中的临床描述并不总是与真实的中描述疾病的方式相匹配- 世界EHR数据。为了提高我们有效使用基因检测的能力,我们可以从数据中大规模学习 在测试和诊断患者时临床捕获。EHR提供了一个研究遗传学的机会 从一个新的角度来看疾病,使可扩展的方法,扩大现有的知识基础, 包括在真实世界的卫生保健数据中观察到的表型。 该提案建立在我们之前从EHR中收集基因检测数据和开发工具的工作基础上 从特征性遗传疾病谱中识别未确诊的患者。具体来说,我们建立了一个 从EHR中提取的超过20,000人的临床基因检测信息数据库, 有关测试结果、变体解释和诊断的详细信息。通过这些资源,我们可以 定义基于EHR的病例系列,这些病例是经遗传学证实的遗传性疾病临床诊断的个体。 我们将使用数据驱动的方法从基于EHR的病例系列中识别特征表型, 将这些结果与OMIM的临床描述合并。这种方法旨在翻译策划, 将OMIM中编目的持久知识转化为可移植和可扩展的产品,该产品可以分层放置在任何一组EHR上 来识别未确诊的遗传病患者 本提案的最终目标是利用这些数据和工具1)翻译并添加到临床 使用真实的世界EHR数据治疗遗传疾病,2)评估基于EHR的工具的诊断率, 识别未诊断的患者,以及3)表征人口统计学和表型特征的贡献, 导致更早或更晚诊断。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lisa Bastarache其他文献

Lisa Bastarache的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lisa Bastarache', 18)}}的其他基金

Translating the Clinical Knowledge of Mendelian Diseases to Real-world EHR Data to Improve Identification of Undiagnosed Patients
将孟德尔疾病的临床知识转化为现实世界的 EHR 数据,以提高对未确诊患者的识别
  • 批准号:
    10704743
  • 财政年份:
    2022
  • 资助金额:
    $ 102.76万
  • 项目类别:
Beyond PheWAS: Recognition of Phenotype Patterns for Discovery and Translation
超越 PheWAS:识别表型模式以进行发现和翻译
  • 批准号:
    10226268
  • 财政年份:
    2011
  • 资助金额:
    $ 102.76万
  • 项目类别:
Beyond PheWAS: Recognition of Phenotype Patterns for Discovery and Translation
超越 PheWAS:识别表型模式以进行发现和翻译
  • 批准号:
    10468287
  • 财政年份:
    2011
  • 资助金额:
    $ 102.76万
  • 项目类别:
Beyond PheWAS: Recognition of Phenotype Patterns for Discovery and Translation
超越 PheWAS:识别表型模式以进行发现和翻译
  • 批准号:
    9755501
  • 财政年份:
    2011
  • 资助金额:
    $ 102.76万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 102.76万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 102.76万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 102.76万
  • 项目类别:
    Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 102.76万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 102.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 102.76万
  • 项目类别:
    Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
  • 批准号:
    2230829
  • 财政年份:
    2023
  • 资助金额:
    $ 102.76万
  • 项目类别:
    Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 102.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 102.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 102.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了