Paramyxoviruses as Vaccine Vectors Against Highly Pathogenic Viruses
副粘病毒作为高致病性病毒的疫苗载体
基本信息
- 批准号:10272101
- 负责人:
- 金额:$ 27.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAdultAdverse eventAerosolsAlphavirusAnimalsAntibodiesAntibody ResponseAntibody titer measurementAntigensAttenuatedAvian Influenza A VirusAvulavirusBiological AssayCD4 Positive T LymphocytesCD8-Positive T-LymphocytesCattleCaviaCell Culture TechniquesCellsChildChimera organismClinicalClinical ResearchComparative StudyCoronavirus spike proteinDevelopmentDoseEbola virusEbola virus envelope glycoproteinEffectivenessEngineeringEnrollmentEvaluationFamily memberGene OrderGenerationsGenesGenetic TranscriptionGenomeGenomicsGlycoproteinsHumanImmune responseImmunityImmunoglobulin AImmunoglobulin GInfantInfectionInfluenza HemagglutininInpatientsIntranasal AdministrationLiftingLungMacacaMacaca fascicularisMacaca mulattaMeasuresMediatingMedicalMembrane GlycoproteinsMembrane ProteinsMessenger RNAModificationMucosal ImmunityMucous MembraneNational Institute of Allergy and Infectious DiseaseNewcastle disease virusNosePara-Influenza Virus Type 1Para-Influenza Virus Type 3ParamyxovirusParticipantPathogenicityPhase I Clinical TrialsPlacebosPolymerasePopulationPrimatesProteinsPublic Health SchoolsQuantitative Reverse Transcriptase PCRRNARandomizedRespiratory SystemRodentRouteSARS coronavirusSafetyScientistSerotypingSerumSevere Acute Respiratory SyndromeSignal TransductionStructure of respiratory epitheliumSurface AntigensSystemTRIP10 geneTestingTexasTimeUnited States National Institutes of HealthUniversitiesUpper respiratory tractVaccinationVaccinesViralViral VaccinesVirionVirusVirus ReplicationVirus SheddingWorkattenuationbasecohortconjunctivadesignexpression vectorimmunogenicimmunogenicityneutralizing antibodynonhuman primateopen labelpandemic diseaseparainfluenza viruspathogenpathogenic virusphase 1 studyrespiratoryresponsereverse geneticssafety studyseropositivetissue tropismvaccine candidatevaccine deliveryvaccine developmentvectorvector vaccinevector-based vaccinevolunteer
项目摘要
We previously constructed a first-generation construct called HPIV3-EbovZ GP, in which the complete genome of the JS strain of HPIV3 was modified by the addition of the EBOV GP gene in the third gene position, between the HPIV3 P and M genes. The JS strain is thought to be an attenuated HPIV3, based on previous clinical studies, although the basis of this attenuation is unknown. EBOV GP is the sole EBOV virion surface protein, the sole EBOV neutralization antigen, and the major protective antigen. The EBOV GP gene was engineered to have the appropriate HPIV3 transcription signals for it to be expressed as a separate mRNA by the HPIV3 polymerase. HPIV3-EbovZ GP was substantially immunogenic and protective when given to non-human primates by combined intranasal (IN) and intratracheal (IT) administration, even in animals previously infected with HPIV3. However, immunogenicity depended on IT delivery of vaccine: IN delivery alone was insufficient. This suggested that vector expression beyond the upper respiratory tract was necessary for immunogenicity.
We therefore explored delivery of the HPIV3-EbovZ GP construct by the aerosol route in rhesus macaques. The aerosol route was generally more immunogenic and protective than the combined IN/IT route. This induced generally higher serum and mucosal EBOV-specific IgG, IgA, and neutralizing antibody titers, as well as EBOV-specific cellular responses in the lungs, including polyfunctional CD8+ T cells and CD4+ T helper cells that were predominately Th1. In addition, the HPIV3-EbovZ GP vaccine induced more robust cell-mediated and humoral immune responses than an alphavirus vaccine delivered parenterally in parallel. One aerosol dose of HPIV3-EbovZ GP conferred 100% protection to macaques against EBOV challenge.
We developed a second-generation version of this vector, called HPIV3/delHNF/EbovZ-GP, in which the HPIV3 F and HN genes were deleted, leaving EBOV GP as the sole viral surface glycoprotein. A large comparative study in cynomolgus monkeys by our collaborator Alexander Bukreyev at the University of Texas Medical Branch, Galveston, (who made the construct while a Staff Scientist in LID/NIAID) showed that this second-generation version was even more protective than the first-generation even though it was very highly restricted for replication (much more restricted than the first-generation construct).
We performed (with clinical collaborators at the Johns Hopkins Bloomberg School of Public Health) an open label phase 1 clinical trial to determine the safety, tolerability, and immunogenicity of HPIV3-EbovZ GP delivered IN in healthy adults in an inpatient setting (NCT025645750), which was intended to be a safety study prior to evaluating aerosol delivery. Ten subjects received two doses (4- to 8-week interval) of 6.0 log10 PFU of vaccine. The first dose was moderately infectious (7/10 subjects shed virus detected by qRT-PCR, mean peak titer 3.8 log10 genomic equivalents/ml, mean duration of shedding 7.9 days). Little shedding was detected after the second dose. A second cohort (n=20) received one of two planned doses of 7.0 log10 PFU of vaccine. Shedding was similar but of shorter duration (mean of 3.7 days). The vaccine was well tolerated, with the exception that asymptomatic ALT elevations were noted in 5 volunteers (3 mild, 2 moderate) in cohort 2 after vaccination and associated with shedding. All resolved by day 28. The study was halted due to these elevations of ALTs, but their significance is unclear. Because of this, this vaccine will not be administered further at this time. Induction of serum antibodies was poor (mucosal antibodies not yet analyzed), but this was expected since, as noted above, we had previously observed that administration by the IN route alone was poorly immunogenic in rhesus monkeys.
We have initiated a Phase 1 study to evaluate the safety, infectivity, and immunogenicity of two doses of the HPIV3/HNF/EbovZ GP vaccine candidate when administered intranasally in healthy adults in an inpatient setting (NCT03462004). Participants are being enrolled sequentially in two cohorts. Participants in Cohort 1 have been randomly assigned to receive two doses of either 6.0 log10 PFU/mL of HPIV3/delHNF/EbovZ-GP vaccine or placebo. The first dose was given on Day 0 and the second dose was given 35 days later. Vaccine replication was evaluated by nasal wash and RT-qPCR and infectivity assays, and serum antibody responses will be measured. As expected, at the 6.0 log10 PFU dose, the HPIV3/HNF/EbovZ-GP vaccine was marginally infectious, and adverse events were generally mild to moderate. The study was deemed safe to proceed to the evaluation of the higher 7.0 log10 PFU dose after the closures due to the current SARS-CoV-2 pandemic will be lifted. Participants in Cohort 2 will be randomly assigned to receive two doses of either 7.0 log10PFU/mL of HPIV3/HNF/EbovZ-GP vaccine or placebo on Days 0 and 28.
我们之前构建了第一代构建体HPIV3- ebovz GP,其中通过在HPIV3 P和M基因之间的第三个基因位置添加EBOV GP基因来修饰HPIV3 JS菌株的全基因组。根据以前的临床研究,JS毒株被认为是一种减毒的HPIV3病毒,尽管这种减毒的基础尚不清楚。EBOV GP是唯一的EBOV病毒粒子表面蛋白,是唯一的EBOV中和抗原,也是主要的保护抗原。EBOV GP基因被设计成具有适当的HPIV3转录信号,以便通过HPIV3聚合酶作为单独的mRNA表达。通过鼻内(IN)和气管内(IT)联合给药给非人类灵长类动物时,HPIV3- ebovz GP具有显著的免疫原性和保护性,即使在先前感染过HPIV3的动物中也是如此。然而,免疫原性取决于疫苗的信息技术递送:单独递送免疫球蛋白是不够的。这表明,载体在上呼吸道以外的表达对于免疫原性是必要的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ursula Buchholz其他文献
Ursula Buchholz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ursula Buchholz', 18)}}的其他基金
Laboratory And Pre-clinical Studies Of Parainfluenza Viruses
副流感病毒的实验室和临床前研究
- 批准号:
10272021 - 财政年份:
- 资助金额:
$ 27.96万 - 项目类别:
Clinical Trials of Vaccines for Respiratory Syncytial Virus and Related Viruses
呼吸道合胞病毒及相关病毒疫苗的临床试验
- 批准号:
10272020 - 财政年份:
- 资助金额:
$ 27.96万 - 项目类别:
Laboratory And Pre-clinical Studies Of Parainfluenza Viruses
副流感病毒的实验室和临床前研究
- 批准号:
10927726 - 财政年份:
- 资助金额:
$ 27.96万 - 项目类别:
Laboratory Studies of Human Respiratory Syncytial Virus and Other Pneumoviruses
人类呼吸道合胞病毒和其他肺病毒的实验室研究
- 批准号:
10692018 - 财政年份:
- 资助金额:
$ 27.96万 - 项目类别:
Paramyxoviruses as Vaccine Vectors Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
副粘病毒作为针对严重急性呼吸系统综合症冠状病毒 2 (SARS-CoV-2) 的疫苗载体
- 批准号:
10692252 - 财政年份:
- 资助金额:
$ 27.96万 - 项目类别:
Paramyxoviruses as Vaccine Vectors Against Highly Pathogenic Viruses
副粘病毒作为高致病性病毒的疫苗载体
- 批准号:
10927793 - 财政年份:
- 资助金额:
$ 27.96万 - 项目类别:
Paramyxoviruses as Vaccine Vectors Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
副粘病毒作为针对严重急性呼吸系统综合症冠状病毒 2 (SARS-CoV-2) 的疫苗载体
- 批准号:
10272294 - 财政年份:
- 资助金额:
$ 27.96万 - 项目类别:
Clinical Trials of Vaccines for Respiratory Syncytial Virus and Related Viruses
呼吸道合胞病毒及相关病毒疫苗的临床试验
- 批准号:
10927725 - 财政年份:
- 资助金额:
$ 27.96万 - 项目类别:
Paramyxoviruses as Vaccine Vectors Against Highly Pathogenic Viruses
副粘病毒作为高致病性病毒的疫苗载体
- 批准号:
10692084 - 财政年份:
- 资助金额:
$ 27.96万 - 项目类别:
Laboratory Studies of Human Respiratory Syncytial Virus and Other Pneumoviruses
人类呼吸道合胞病毒和其他肺病毒的实验室研究
- 批准号:
10272025 - 财政年份:
- 资助金额:
$ 27.96万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 27.96万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 27.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 27.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 27.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




