Algorithm-based prevention and reduction of cancer health disparity arising from data inequality
基于算法的预防和减少数据不平等引起的癌症健康差异
基本信息
- 批准号:10275989
- 负责人:
- 金额:$ 35.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAfrican AmericanAlgorithmsArchivesArtificial IntelligenceAsiansBenchmarkingBiomedical ResearchCaucasiansClinicalClinical ResearchCohort StudiesComputing MethodologiesDataData SetDatabasesDiagnosisDisadvantagedDistantEthnic groupEuropeanGenomicsGenotypeGoalsHealthcare SystemsHispanicsIndividualInequalityInformation Resources ManagementInternetKnowledgeLeadLearningMachine LearningMalignant NeoplasmsMedical GeneticsMinorityMinority GroupsModelingMultiomic DataOutcomePerformancePopulationPredictive AnalyticsPreventionPrognosisPsychological TransferRaceResearchResearch Project GrantsResourcesRetrievalSamplingSchemeSystemTestingThe Cancer Genome AtlasTherapeuticTrainingWorkbasecancer genomicscancer health disparitycancer riskcancer subtypescancer typecohortdatabase of Genotypes and Phenotypesdisorder riskethnic disadvantageethnic disparityethnic diversityethnic minority populationexperimental studygenetic architecturegenome wide association studygenomic datahealth disparityimprovedinnovationknowledge basemachine learning methodmulti-ethnicphenotypic dataprecision medicinepreventresearch studyresponsesecondary analysisself-directed learningstatisticsuser-friendly
项目摘要
Ethnic minority groups have a long-term cumulative data disadvantage in biomedical research and clinical
studies. Statistics have shown that over 90% of the samples in cancer-related GWAS and clinical omics projects
were collected from Individuals of European ancestry. This severe data disadvantage of the ethnic minority
groups is set to produce new health disparities as data-driven, algorithm-based biomedical research and clinical
decisions become increasingly common. The new cancer disparity arising from data inequality can potentially
impact all ethnic minority groups in all types of cancers where data inequality exists. Thus, its negative impact is
not limited to the cancer types or subtypes for which significant ethnic disparities have already been evident. The
long-term goal of the proposed research is to prevent or reduce the heath disparities arising from the data
disadvantage of ethnic minority groups. The overall objective of this work is to obtain key knowledge and create
open resources to establish a new paradigm for machine learning with multiethnic clinical omics data. Our central
hypothesis is that the knowledge learned from data of the majority population can be transferred to improve
machine learning performance on the data-disadvantaged ethnic minority groups. Guided by strong preliminary
data, we will pursuit two specific aims to 1) Discover from cancer clinical omics data and genotype-phenotype
data: under what conditions and to what extent the transfer learning scheme improves machine learning model
performance on data-disadvantaged ethnic minority groups; 2) Create an open resource system for unbiased
multiethnic machine learning to prevent or reduce new health disparities arising from the data disadvantage of
ethnic minorities. The approach is innovative because it represents a substantive departure from the status quo
by shifting the paradigm of multiethnic machine learning from mixture learning and independent learning
schemes to a transfer learning scheme. The proposed research is significant, because it is expected to establish
a new paradigm for unbiased multiethnic machine learning and to provide an open resource system to facilitate
the paradigm shift, and thus to prevent or reduce health disparities arising from the data disadvantage of ethnic
minorities.
少数族裔群体在生物医学研究和临床上具有长期累积数据劣势
研究。统计数据表明,与癌症相关的GWA和临床上的OMICS项目中,超过90%的样品
是从欧洲血统的个人那里收集的。少数民族的这种严重的数据劣势
小组将产生新的健康差异,作为基于数据驱动的,基于算法的生物医学研究和临床
决定变得越来越普遍。数据不平等引起的新癌症差异可能可能
在存在数据不平等的所有类型的癌症中影响所有少数民族群体。因此,其负面影响是
不仅限于已经明显存在重大种族差异的癌症类型或亚型。这
拟议的研究的长期目标是预防或减少数据引起的卫生差异
少数民族群体的劣势。这项工作的总体目标是获得关键知识并创建
开放资源,通过多种族临床OMICS数据建立用于机器学习的新范式。我们的中心
假设是可以转移从大多数人群的数据中学到的知识以改善
在数据 - 占地的少数民族群体上的机器学习表现。在强大的初步指导下
数据,我们将追求两个具体的目的1)从癌症临床上发现数据和基因型 - 表型。
数据:在什么条件下以及转移学习方案在何种程度上改善机器学习模型
在数据居住的少数民族群体上的表现; 2)为公正创建开放的资源系统
多民族的机器学习,以防止或减少由于数据缺点而引起的新健康差异
少数民族。这种方法具有创新性,因为它代表了与现状的实质性偏离
通过将多民族机器学习的范式从混合学习和独立学习中转移
转移学习计划的方案。拟议的研究很重要,因为有望建立
公正的多民族机器学习的新范式,并提供开放的资源系统以促进
范式转移,从而防止或减少因种族缺点而引起的健康差异
少数民族。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAN CUI其他文献
YAN CUI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAN CUI', 18)}}的其他基金
Targeting the CD73-adenosinergic pathway in head and neck cancer
靶向头颈癌中的 CD73 腺苷能通路
- 批准号:
10813613 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别:
Algorithm-based prevention and reduction of cancer health disparity arising from data inequality
基于算法的预防和减少数据不平等引起的癌症健康差异
- 批准号:
10673024 - 财政年份:2021
- 资助金额:
$ 35.23万 - 项目类别:
CD73 expression on cancer-associated fibroblasts of Head and Neck Cancers shapes the immune landscape
头颈癌癌症相关成纤维细胞上的 CD73 表达塑造免疫景观
- 批准号:
9912757 - 财政年份:2019
- 资助金额:
$ 35.23万 - 项目类别:
P53 inactivation on MDSC development and tumor progression
P53 失活对 MDSC 发育和肿瘤进展的影响
- 批准号:
9248356 - 财政年份:2013
- 资助金额:
$ 35.23万 - 项目类别:
P53 inactivation on MDSC development and tumor progression
P53 失活对 MDSC 发育和肿瘤进展的影响
- 批准号:
8577716 - 财政年份:2013
- 资助金额:
$ 35.23万 - 项目类别:
P53 inactivation on MDSC development and tumor progression
P53 失活对 MDSC 发育和肿瘤进展的影响
- 批准号:
8868065 - 财政年份:2013
- 资助金额:
$ 35.23万 - 项目类别:
P53 inactivation on MDSC development and tumor progression
P53 失活对 MDSC 发育和肿瘤进展的影响
- 批准号:
8692674 - 财政年份:2013
- 资助金额:
$ 35.23万 - 项目类别:
In vivo targeted DC vaccine to activate anti-tumor CTL
体内靶向DC疫苗激活抗肿瘤CTL
- 批准号:
7913511 - 财政年份:2009
- 资助金额:
$ 35.23万 - 项目类别:
OVERCOMING TUMOR TOLERANCE THROUGH IN VIVO GENERATED DENDRITIC CELLS
通过体内生成的树突状细胞克服肿瘤耐受性
- 批准号:
7720483 - 财政年份:2008
- 资助金额:
$ 35.23万 - 项目类别:
LSUHSC COBRE:PROJ 2: OVERCOMING TUMOR TOLER THROUGH IN VIVO GEN* DENDRITIC CELLS
LSUHSC COBRE:项目 2:通过 VIVO GEN* 树突状细胞克服肿瘤耐受性
- 批准号:
7610786 - 财政年份:2007
- 资助金额:
$ 35.23万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Role of YB1 in health disparities in triple negative breast cancer
YB1 在三阴性乳腺癌健康差异中的作用
- 批准号:
10655943 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别:
The Meharry Cancer Summer Research Program (SuRP)
梅哈里癌症夏季研究计划 (SuRP)
- 批准号:
10715291 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别:
The role of the contextual food environment and community programs and policies on diet and dietary disparities in the national Healthy Communities Study
背景食物环境和社区计划以及饮食政策和饮食差异在国家健康社区研究中的作用
- 批准号:
10730780 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别:
International Conference on Cancer Health Disparities
国际癌症健康差异会议
- 批准号:
10606212 - 财政年份:2023
- 资助金额:
$ 35.23万 - 项目类别: