Algorithm-based prevention and reduction of cancer health disparity arising from data inequality
基于算法的预防和减少数据不平等引起的癌症健康差异
基本信息
- 批准号:10673024
- 负责人:
- 金额:$ 34.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAfrican American populationAlgorithmsArchivesArtificial IntelligenceAsian populationBenchmarkingBiomedical ResearchCaucasiansClinicalClinical ResearchCodeCohort StudiesComputing MethodologiesDataData SetDatabasesDiagnosisDisadvantagedDisadvantaged minorityDisparityDistantEthnic OriginEthnic PopulationEuropean ancestryGenomicsGenotypeGoalsHealthcare SystemsHispanic PopulationsIndividualInequalityInternetKnowledgeKnowledge ManagementLearningMachine LearningMalignant NeoplasmsMedical GeneticsMinority GroupsModelingMultiomic DataOutcomePerformancePopulationPredictive AnalyticsPreventionPrognosisRaceReduce health disparitiesResearchResearch Project GrantsResourcesRetrievalSamplingSchemeSystemTestingThe Cancer Genome AtlasTherapeuticTrainingWorkbasecancer genomicscancer health disparitycancer riskcancer subtypescancer typecohortdatabase of Genotypes and Phenotypesdisorder riskethnic disparityethnic diversityethnic minorityethnic minority populationexperimental studygenetic architecturegenome wide association studygenomic datahealth disparityimprovedinnovationknowledgebasemachine learning methodmachine learning modelmulti-ethnicphenotypic dataprecision medicinepreventracial populationresearch studyresponsesecondary analysisself-directed learningstatisticstransfer learninguser-friendly
项目摘要
Ethnic minority groups have a long-term cumulative data disadvantage in biomedical research and clinical
studies. Statistics have shown that over 90% of the samples in cancer-related GWAS and clinical omics projects
were collected from Individuals of European ancestry. This severe data disadvantage of the ethnic minority
groups is set to produce new health disparities as data-driven, algorithm-based biomedical research and clinical
decisions become increasingly common. The new cancer disparity arising from data inequality can potentially
impact all ethnic minority groups in all types of cancers where data inequality exists. Thus, its negative impact is
not limited to the cancer types or subtypes for which significant ethnic disparities have already been evident. The
long-term goal of the proposed research is to prevent or reduce the heath disparities arising from the data
disadvantage of ethnic minority groups. The overall objective of this work is to obtain key knowledge and create
open resources to establish a new paradigm for machine learning with multiethnic clinical omics data. Our central
hypothesis is that the knowledge learned from data of the majority population can be transferred to improve
machine learning performance on the data-disadvantaged ethnic minority groups. Guided by strong preliminary
data, we will pursuit two specific aims to 1) Discover from cancer clinical omics data and genotype-phenotype
data: under what conditions and to what extent the transfer learning scheme improves machine learning model
performance on data-disadvantaged ethnic minority groups; 2) Create an open resource system for unbiased
multiethnic machine learning to prevent or reduce new health disparities arising from the data disadvantage of
ethnic minorities. The approach is innovative because it represents a substantive departure from the status quo
by shifting the paradigm of multiethnic machine learning from mixture learning and independent learning
schemes to a transfer learning scheme. The proposed research is significant, because it is expected to establish
a new paradigm for unbiased multiethnic machine learning and to provide an open resource system to facilitate
the paradigm shift, and thus to prevent or reduce health disparities arising from the data disadvantage of ethnic
minorities.
少数民族群体在生物医学研究和临床中具有长期累积的数据劣势
问题研究统计显示,在癌症相关的GWAS和临床组学项目中,
是从欧洲血统的个体中收集的。少数民族的这一严重数据劣势
随着数据驱动的、基于算法的生物医学研究和临床研究的发展,
决策变得越来越普遍。由数据不平等引起的新的癌症差异可能会
在存在数据不平等的所有类型癌症中影响所有少数民族群体。其负面影响是
不限于已经明显存在显著种族差异的癌症类型或亚型。的
拟议研究的长期目标是防止或减少由数据引起的健康差异
少数民族群体的弱势。这项工作的总体目标是获得关键知识,
开放资源,建立一个新的范例,机器学习与多民族临床组学数据。我们的中央
一个假设是,从大多数人口的数据中学到的知识可以转移到改善
机器学习在数据弱势少数民族群体上的表现。以强有力的初步指导
数据,我们将追求两个具体目标:1)从癌症临床组学数据和基因型-表型中发现
数据:在什么条件下,迁移学习方案在多大程度上改善了机器学习模型
数据弱势少数民族群体的表现; 2)创建一个开放的资源系统,
多种族机器学习,以防止或减少由于数据劣势而产生的新的健康差异。
少数民族。这一方法是创新的,因为它代表着对现状的实质性背离
通过将多民族机器学习的范式从混合学习和独立学习转变为
迁移学习方案。这项研究意义重大,因为它有望建立
一个无偏见的多种族机器学习的新范式,并提供一个开放的资源系统,以促进
模式的转变,从而防止或减少由于少数民族的数据劣势而产生的健康差距,
少数群体
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Addressing the Challenge of Biomedical Data Inequality: An Artificial Intelligence Perspective.
- DOI:10.1146/annurev-biodatasci-020722-020704
- 发表时间:2023-08-10
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Clinical time-to-event prediction enhanced by incorporating compatible related outcomes.
通过纳入兼容的相关结果来增强临床事件发生时间预测。
- DOI:10.1371/journal.pdig.0000038
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gao,Yan;Cui,Yan
- 通讯作者:Cui,Yan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAN CUI其他文献
YAN CUI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAN CUI', 18)}}的其他基金
Targeting the CD73-adenosinergic pathway in head and neck cancer
靶向头颈癌中的 CD73 腺苷能通路
- 批准号:
10813613 - 财政年份:2023
- 资助金额:
$ 34.52万 - 项目类别:
Algorithm-based prevention and reduction of cancer health disparity arising from data inequality
基于算法的预防和减少数据不平等引起的癌症健康差异
- 批准号:
10275989 - 财政年份:2021
- 资助金额:
$ 34.52万 - 项目类别:
CD73 expression on cancer-associated fibroblasts of Head and Neck Cancers shapes the immune landscape
头颈癌癌症相关成纤维细胞上的 CD73 表达塑造免疫景观
- 批准号:
9912757 - 财政年份:2019
- 资助金额:
$ 34.52万 - 项目类别:
P53 inactivation on MDSC development and tumor progression
P53 失活对 MDSC 发育和肿瘤进展的影响
- 批准号:
9248356 - 财政年份:2013
- 资助金额:
$ 34.52万 - 项目类别:
P53 inactivation on MDSC development and tumor progression
P53 失活对 MDSC 发育和肿瘤进展的影响
- 批准号:
8692674 - 财政年份:2013
- 资助金额:
$ 34.52万 - 项目类别:
P53 inactivation on MDSC development and tumor progression
P53 失活对 MDSC 发育和肿瘤进展的影响
- 批准号:
8868065 - 财政年份:2013
- 资助金额:
$ 34.52万 - 项目类别:
P53 inactivation on MDSC development and tumor progression
P53 失活对 MDSC 发育和肿瘤进展的影响
- 批准号:
8577716 - 财政年份:2013
- 资助金额:
$ 34.52万 - 项目类别:
In vivo targeted DC vaccine to activate anti-tumor CTL
体内靶向DC疫苗激活抗肿瘤CTL
- 批准号:
7913511 - 财政年份:2009
- 资助金额:
$ 34.52万 - 项目类别:
OVERCOMING TUMOR TOLERANCE THROUGH IN VIVO GENERATED DENDRITIC CELLS
通过体内生成的树突状细胞克服肿瘤耐受性
- 批准号:
7720483 - 财政年份:2008
- 资助金额:
$ 34.52万 - 项目类别:
LSUHSC COBRE:PROJ 2: OVERCOMING TUMOR TOLER THROUGH IN VIVO GEN* DENDRITIC CELLS
LSUHSC COBRE:项目 2:通过 VIVO GEN* 树突状细胞克服肿瘤耐受性
- 批准号:
7610786 - 财政年份:2007
- 资助金额:
$ 34.52万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 34.52万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 34.52万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 34.52万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 34.52万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 34.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 34.52万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 34.52万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 34.52万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 34.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 34.52万 - 项目类别:
Studentship














{{item.name}}会员




