Learning a molecular shape space for the adaptive immune system
学习适应性免疫系统的分子形状空间
基本信息
- 批准号:10275426
- 负责人:
- 金额:$ 36.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdaptive Immune SystemAddressAffinityAmino AcidsAntibodiesB-LymphocytesBindingBiologicalBiological ProcessBiophysicsCatalytic DomainCollaborationsComplexComputer ModelsDataFramework RegionsImmuneImmune TargetingImmunologic ReceptorsLearningMachine LearningModelingMolecularNeighborhoodsPropertyProtein SubunitsProteinsShapesSpecific qualifier valueSpecificityStructureSurfaceT-Cell ReceptorTechniquesThinnessbiophysical propertiescell typedesigninnovationmachine learning methodmolecular recognitionmolecular shapenovelpathogenprotein functionprotein protein interactionprotein structurereceptorresponsethree dimensional structure
项目摘要
Project Summary
The adaptive immune system consists of highly diverse B- and T-cell receptors, which can recognize and
neutralize a multitude of diverse pathogens. Immune recognition relies on molecular interactions between
immune receptors and pathogens, which in turn is determined by the complementarity of their 3D structures and
amino acid compositions, i.e., their shapes. Immune shape space has been previously introduced as an
abstraction for such molecular recognition to explain how immune repertoires are organized to counter diverse
pathogens. However, the relationships between immune receptor sequence, shape, and specificity are very
difficult to quantify in practice. We propose to use recent advances in machine learning and the wealth of
molecular data to infer an effective shape space, grounded in biophysics of protein interactions. The key is to
find a representation of proteins in general, and of immune receptors, in particular, that reflects the relevant
biophysical properties that determine a protein receptor’s stability, function, and interaction with pathogens.
Representation learning is a powerful technique in machine learning that uses large amounts of data to
infer a reduced representation. Since protein function is closely related to the 3D structure, we will develop novel
machine learning methods that use atomic coordinates of a protein structure as input and, through
transformations that respect the physical symmetries in the data, learn representations that reflect biophysical
properties of proteins and protein-protein interactions. We believe a key innovation in our approach is the
analysis of amino acid neighborhoods within 3D protein structures. The distribution of these neighborhoods will
reveal how they differ at the surface, in the bulk, and at functionally important regions such as catalytic sites.
The learned protein representation will enable us to characterize how specific compositions of amino acid
neighborhoods are the building blocks of protein structure and protein function. We will transfer the
representation of protein universe to immune receptors to learn the immune shape space. The leaned immune
shape space will enable us to address how affinity and specificity are encoded by immune receptors in different
cell types. We will study how the modular structure of immune receptors, with separate pathogen engaging and
framework regions, enables receptors to diversify and target a multitude of pathogens, without compromising
their stability. We will use the complementary aspect of shape recognition to predict the antigenic targets of the
immune receptors, and through collaborations, we will experimentally validate our predictions.
Our approach opens a new path towards interpretable computational models of proteins and immune
receptors that describe how biological properties and biological function emerge from protein subunits.
Additionally, the inferred molecular representations can be used as a generative model, where desired
properties, such as antigenic targets, are specified and new proteins can be generated.
项目摘要
适应性免疫系统由高度多样化的B和T细胞受体组成,其可以识别并
中和多种病原体免疫识别依赖于分子间的相互作用,
免疫受体和病原体,这反过来又由它们的3D结构的互补性决定,
氨基酸组成,即,它们的形状免疫形状空间以前曾作为
这种分子识别的抽象,以解释免疫库是如何组织起来对抗不同的
病原体然而,免疫受体序列、形状和特异性之间的关系是非常复杂的。
在实践中难以量化。我们建议利用机器学习的最新进展和
分子数据来推断有效的形状空间,以蛋白质相互作用的生物物理学为基础。关键是要
找到一般蛋白质的代表,特别是免疫受体,反映了相关的
生物物理特性决定蛋白质受体的稳定性、功能和与病原体的相互作用。
表示学习是机器学习中的一种强大技术,它使用大量数据来
推断简化表示。由于蛋白质功能与3D结构密切相关,我们将开发新的
使用蛋白质结构的原子坐标作为输入的机器学习方法,
尊重数据中的物理对称性的变换,学习反映生物物理的表示,
蛋白质的性质和蛋白质-蛋白质相互作用。我们认为,我们方法的一个关键创新是,
分析3D蛋白质结构中的氨基酸邻域。这些街区的分布
揭示了它们在表面、本体和功能重要区域(如催化位点)的差异。
所学习的蛋白质表示将使我们能够表征氨基酸的特定组成
邻域是蛋白质结构和蛋白质功能的构建块。我们将把
将蛋白质宇宙表示为免疫受体以学习免疫形状空间。倾斜的免疫力
形状空间将使我们能够解决亲和力和特异性是如何编码的免疫受体在不同的
细胞类型。我们将研究免疫受体的模块化结构如何与单独的病原体接合,
框架区,使受体多样化,并针对多种病原体,而不损害
他们的稳定性。我们将使用形状识别的互补方面来预测抗原的目标,
免疫受体,并通过合作,我们将实验验证我们的预测。
我们的方法为蛋白质和免疫系统的可解释计算模型开辟了一条新的道路。
描述生物学特性和生物学功能如何从蛋白质亚基产生的受体。
此外,如果需要,推断的分子表示可以用作生成模型
例如抗原靶的特性被指定,并且可以产生新的蛋白质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Armita Nourmohammad其他文献
Armita Nourmohammad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Armita Nourmohammad', 18)}}的其他基金
Learning a molecular shape space for the adaptive immune system
学习适应性免疫系统的分子形状空间
- 批准号:
10669709 - 财政年份:2021
- 资助金额:
$ 36.9万 - 项目类别:
Learning a molecular shape space for the adaptive immune system
学习适应性免疫系统的分子形状空间
- 批准号:
10467050 - 财政年份:2021
- 资助金额:
$ 36.9万 - 项目类别:
相似海外基金
Single-cell analysis of adaptive immune system cells in IBD patients
IBD 患者适应性免疫系统细胞的单细胞分析
- 批准号:
22KJ2212 - 财政年份:2023
- 资助金额:
$ 36.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Antigen presentation to the adaptive immune system in the choroid contributes to ocular autoimmune disease
脉络膜中的适应性免疫系统的抗原呈递导致眼部自身免疫性疾病
- 批准号:
10740465 - 财政年份:2023
- 资助金额:
$ 36.9万 - 项目类别:
Elucidation of the adaptive immune system in teleost fish
阐明硬骨鱼的适应性免疫系统
- 批准号:
22K05824 - 财政年份:2022
- 资助金额:
$ 36.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interaction of Galectin-9 and Pregnancy-Specific Glycoprotein 1 in the Regulation of Cells of the Innate and Adaptive Immune System
Galectin-9 和妊娠特异性糖蛋白 1 在先天性和适应性免疫系统细胞调节中的相互作用
- 批准号:
10434937 - 财政年份:2021
- 资助金额:
$ 36.9万 - 项目类别:
Peripheral Adaptive Immune System Changes Associated with Alzhiemer's Disease
与阿尔茨海默病相关的外周适应性免疫系统变化
- 批准号:
10194864 - 财政年份:2021
- 资助金额:
$ 36.9万 - 项目类别:
Interaction of Galectin-9 and Pregnancy-Specific Glycoprotein 1 in the Regulation of Cells of the Innate and Adaptive Immune System
Galectin-9 和妊娠特异性糖蛋白 1 在先天性和适应性免疫系统细胞调节中的相互作用
- 批准号:
10302501 - 财政年份:2021
- 资助金额:
$ 36.9万 - 项目类别:
CAREER: Emergence of Functional Organization in the Adaptive Immune System
职业:适应性免疫系统中功能组织的出现
- 批准号:
2045054 - 财政年份:2021
- 资助金额:
$ 36.9万 - 项目类别:
Continuing Grant
Learning a molecular shape space for the adaptive immune system
学习适应性免疫系统的分子形状空间
- 批准号:
10669709 - 财政年份:2021
- 资助金额:
$ 36.9万 - 项目类别:
Learning a molecular shape space for the adaptive immune system
学习适应性免疫系统的分子形状空间
- 批准号:
10467050 - 财政年份:2021
- 资助金额:
$ 36.9万 - 项目类别:
Effects of early-stage sepsis on the development of the adaptive immune system
早期脓毒症对适应性免疫系统发育的影响
- 批准号:
20K16855 - 财政年份:2020
- 资助金额:
$ 36.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists