Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims

使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释

基本信息

  • 批准号:
    10277514
  • 负责人:
  • 金额:
    $ 78.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-05 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary Preventing suicide is one of the great public health challenges facing the US health care system. People who seek emergency care for mental health complaints are at high short-term risk of non-fatal suicide events and suicide. Yet identifying high-risk patients is challenging as risk fluctuates in a poorly understood manner. It is especially difficult to evaluate risk in emergency settings, where access to the patient's mental health history is often limited. The proposed project seeks to address this critical knowledge gap by pairing data mining and machine learning methods with rich data sources in order to develop short-term prediction models of non-fatal suicidal events and suicide for patients presenting to EDs with mental health problems. The specific aims of this study are to 1) apply advanced machine learning data analytic techniques to electronic health record (EHR) data to develop a clinically rich description of ED mental health patient characteristics that predict suicide and non-fatal suicidal events over a 90- day follow-up period; 2) use longitudinal and temporal features of EHR and claims data from the 180 days preceding the ED mental health visit to generate clinically interpretable suicide and suicidal event risk scores; and 3) convene ED physicians to enhance model development, clinical interpretability, and utility of a suicide risk assessment clinical decision support tool. We will achieve these aims by leveraging several different sophisticated machine learning analytic methods of existing longitudinal clinical and service use information. We seek to develop point-in-time, short-term risk scores for suicidal symptoms and suicide death and the clinical features that drive that risk that may be used to inform clinical risk assessment and management of patients who present to EDs with mental health complaints. Risk algorithms will be developed and validated using health information from a large combined EHR and claims dataset with over 24 million commercially insured patients, which is linked to the National Death Index. Findings will yield new insights regarding patient-specific risk factors and potential targets for intervention. By drawing on data sources common to most health care systems and using efficient computer algorithms this approach has the potential to develop clinically interpretable suicide risk scores at the point of ED evaluation and following disposition. This will help front- line clinicians focus their efforts on high risk patients during high risk periods to inform intervention decisions about suicide risk.
项目摘要 预防自杀是美国医疗保健面临的重大公共卫生挑战之一 系统寻求精神健康投诉紧急护理的人短期内 非致命性自杀事件和自杀的风险。然而,识别高风险患者具有挑战性, 风险波动的方式知之甚少。评估风险尤其困难, 紧急情况下,患者的心理健康史往往是有限的。的 拟议的项目旨在通过配对数据挖掘和 机器学习方法与丰富的数据源,以发展短期预测 精神健康的ED患者的非致命性自杀事件和自杀模型 问题 本研究的具体目标是:1)应用先进的机器学习数据分析 电子健康记录(EHR)数据的技术,以开发临床上丰富的艾德描述 预测自杀和非致命性自杀事件的精神健康患者特征, 天的随访期; 2)使用纵向和时间特征的EHR和索赔数据, 艾德心理健康访视前180天,以产生临床可解释的自杀, 自杀事件风险评分;和3)召集艾德医师以增强模型开发, 临床可解释性和自杀风险评估临床决策支持工具的实用性。 我们将通过利用几种不同的复杂机器学习来实现这些目标 现有纵向临床和服务使用信息的分析方法。我们寻求 制定自杀症状和自杀死亡的时间点,短期风险评分, 驱动该风险的临床特征,可用于告知临床风险评估, 管理向急诊科提出精神健康投诉的患者。风险算法将 使用来自大型组合EHR和索赔的健康信息进行开发和验证 超过2400万商业保险患者的数据集,与全国死亡率相关 指数.研究结果将产生关于患者特定风险因素和潜在目标的新见解 进行干预。通过利用大多数医疗保健系统通用的数据源, 有效的计算机算法,这种方法有潜力开发临床解释 在艾德评估时和处置后的自杀风险评分。这将有助于前- 一线临床医生在高风险期将精力集中在高风险患者身上, 关于自杀风险的干预决定。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEVEN C MARCUS其他文献

STEVEN C MARCUS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEVEN C MARCUS', 18)}}的其他基金

Administrative Data Transfer Masking, Access, and Ethics Core
管理数据传输屏蔽、访问和道德核心
  • 批准号:
    10774554
  • 财政年份:
    2023
  • 资助金额:
    $ 78.42万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10462646
  • 财政年份:
    2021
  • 资助金额:
    $ 78.42万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10631239
  • 财政年份:
    2021
  • 资助金额:
    $ 78.42万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10809977
  • 财政年份:
    2021
  • 资助金额:
    $ 78.42万
  • 项目类别:
Improving the Emergency Department Management of Deliberate Self-Harm
完善急诊科对故意自残的管理
  • 批准号:
    9512435
  • 财政年份:
    2017
  • 资助金额:
    $ 78.42万
  • 项目类别:
Improving the Emergency Department Management of Deliberate Self-Harm
完善急诊科对故意自残的管理
  • 批准号:
    9265516
  • 财政年份:
    2016
  • 资助金额:
    $ 78.42万
  • 项目类别:
Emergency Department Recognition of Mental Disorders and Short-Term Outcome of Deliberate Self-Harm in Older Adults
急诊科对老年人精神障碍和故意自残的短期结果的认识
  • 批准号:
    9443725
  • 财政年份:
    2016
  • 资助金额:
    $ 78.42万
  • 项目类别:
Improving the Emergency Department Management of Deliberate Self-Harm
完善急诊科对故意自残的管理
  • 批准号:
    9904783
  • 财政年份:
    2016
  • 资助金额:
    $ 78.42万
  • 项目类别:
Inpatient Psychiatric Safety at the VA
退伍军人管理局住院精神科安全
  • 批准号:
    8597954
  • 财政年份:
    2012
  • 资助金额:
    $ 78.42万
  • 项目类别:
Inpatient Psychiatric Safety at the VA
退伍军人管理局住院精神科安全
  • 批准号:
    8278355
  • 财政年份:
    2012
  • 资助金额:
    $ 78.42万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 78.42万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 78.42万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.42万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.42万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 78.42万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.42万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 78.42万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 78.42万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 78.42万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.42万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了