Single-molecule analysis of how birth and death of mRNAs are regulated inside a bacterial cell

单分子分析细菌细胞内 mRNA 的产生和死亡如何调节

基本信息

  • 批准号:
    10275999
  • 负责人:
  • 金额:
    $ 38.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary Bacteria are everywhere around us, playing critical roles in our health and global ecosystems. Understanding how bacteria thrive is extremely important in keeping our bodies and environments safe and healthy. Bacteria can dynamically adapt to a wide array of conditions by modifying their gene expression program, for example, by boosting the production of proteins necessary for survival and limiting the wasteful production of others. The ultimate goal of my research is to gain an enriched understanding of bacterial gene regulation, thus I study the very fundamental question of how transcription, translation, and mRNA degradation are performed and regulated in physiological settings. Due to the absence of a nucleus in bacterial cells, these three processes occur in the same cytoplasmic volume without clear separations. Therefore, the cellular mechanisms enabling their coordination inside a single cell offer an important foundation for understanding bacterial gene expression programs. Here I describe projects in my group aiming to define the generalizable principles underlying the spatiotemporal coordination of transcription, translation, and mRNA degradation in bacterial cells. We plan to answer the following key questions: (1) What is the mechanism of transcription-translation coupling? (2) How is the interaction between RNA polymerase (RNAP) and ribosome dynamically regulated? (3) How is the rate of mRNA degradation regulated by the age of mRNA and the subcellular localization of RNase E, the major ribonuclease for mRNA degradation in Escherichia coli? We will answer these questions by imaging the dynamics of RNAP, ribosome, and RNase E at the single-molecule level in live cells. Combining these techniques with bacterial genetics, we will identify factors that can modulate the dynamics of RNAP- ribosome interactions and analyze the subcellular heterogeneity in the localization and function of RNase E. Collectively, our work will uncover new mechanistic principles of bacterial gene regulation and generate new methods for measuring, controlling, and modeling gene expression dynamics at the single-molecule level in live cells. The findings from our work have potential applications for a broad range of human health issues, such as promoting healthy microbiomes, killing pathogens, and improving industrial processes to reduce pollution.
项目摘要 细菌在我们周围无处不在,在我们的健康和全球生态系统中发挥着关键作用。理解 细菌如何繁殖对于保持我们的身体和环境的安全和健康至关重要。细菌 可以通过修改它们的基因表达程序来动态地适应各种各样的条件,例如, 通过促进生存所必需的蛋白质的生产,并限制其他蛋白质的浪费生产。 我研究的最终目标是获得对细菌基因调控的丰富理解,因此我研究 转录、翻译和mRNA降解是如何进行的, 在生理环境中调节。由于细菌细胞中没有细胞核, 发生在相同的细胞质体积中,没有明显的分离。因此,细胞机制使 它们在单个细胞内的协调为理解细菌基因提供了重要基础 表达程序。在这里,我描述了我的小组旨在定义可推广原则的项目 细菌中转录、翻译和mRNA降解的时空协调 细胞我们计划回答以下关键问题:(1)转录-翻译的机制是什么 耦合?(2)RNA聚合酶(RNAP)与核糖体之间的相互作用是如何动态调节的? (3)mRNA降解速率是如何受mRNA年龄和mRNA亚细胞定位的调节的? 核糖核酸酶E是大肠杆菌中降解mRNA的主要核糖核酸酶吗?我们将回答这些问题, 在活细胞中在单分子水平上成像RNAP、核糖体和RNase E的动力学。结合 利用这些细菌遗传学技术,我们将识别可以调节RNAP动态的因素- 核糖体相互作用,并分析RNase E的定位和功能的亚细胞异质性。 总的来说,我们的工作将揭示细菌基因调控的新机制原则,并产生新的 在单分子水平上测量、控制和模拟基因表达动力学的方法, 活细胞我们的研究结果对广泛的人类健康问题具有潜在的应用价值, 例如促进健康的微生物组,杀死病原体,改善工业流程, 污染

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sangjin Kim其他文献

Sangjin Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sangjin Kim', 18)}}的其他基金

Single-molecule analysis of how birth and death of mRNAs are regulated inside a bacterial cell
单分子分析细菌细胞内 mRNA 的产生和死亡如何调节
  • 批准号:
    10579101
  • 财政年份:
    2021
  • 资助金额:
    $ 38.7万
  • 项目类别:
Single-molecule analysis of how birth and death of mRNAs are regulated inside a bacterial cell
单分子分析细菌细胞内 mRNA 的产生和死亡如何调节
  • 批准号:
    10624918
  • 财政年份:
    2021
  • 资助金额:
    $ 38.7万
  • 项目类别:
Single-molecule analysis of how birth and death of mRNAs are regulated inside a bacterial cell
单分子分析细菌细胞内 mRNA 的产生和死亡如何调节
  • 批准号:
    10451617
  • 财政年份:
    2021
  • 资助金额:
    $ 38.7万
  • 项目类别:

相似国自然基金

Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
  • 批准号:
    81971557
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
  • 批准号:
    51678163
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
  • 批准号:
    24H00582
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
  • 批准号:
    BB/Y003187/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Research Grant
DNA replication dynamics in living bacteria
活细菌中的 DNA 复制动态
  • 批准号:
    23K25843
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Conference: Symposium on the Immune System of Bacteria
会议:细菌免疫系统研讨会
  • 批准号:
    2349218
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Standard Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
  • 批准号:
    EP/Y023528/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
  • 批准号:
    EP/Y029542/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Fellowship
Assembly of the matrix that supports bacteria living in biofilms
支持生活在生物膜中的细菌的基质的组装
  • 批准号:
    2468773
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Studentship
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
  • 批准号:
    BB/Y005724/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
  • 批准号:
    BB/Y007611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Research Grant
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
  • 批准号:
    2338880
  • 财政年份:
    2024
  • 资助金额:
    $ 38.7万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了