Quantifying Error Growth to Improve Infectious Disease Forecast Accuracy
量化误差增长以提高传染病预测准确性
基本信息
- 批准号:10278807
- 负责人:
- 金额:$ 66.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-09 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAssimilationsBehaviorBiological ModelsBreedingCalibrationCharacteristicsClimateClinics and HospitalsCombinatorial OptimizationCommunicable DiseasesCommutingComplexCoronavirusCountryDataDecision MakingDengueDiagnosisDiseaseDisease OutbreaksDisease SurveillanceEbolaEndemic DiseasesEpidemicError SourcesFutureGeographyGrowthHealthcareHospital PlanningIncidenceInfluenzaInternationalLeadLocationMathematicsMediatingMethodsModelingOutcomePatientsProcessPublic HealthRecurrent diseaseResearchSiteSourceStructural ModelsStructureSystemTimeTravelUncertaintyWeatherWest Nile virusWorkbasedesignimprovedinfectious disease modelinsightmedical countermeasuremodels and simulationnetwork modelsnovelpandemic influenzapathogenrespiratory virusresponseseasonal influenzasimulationsoundsurveillance datasurveillance networktransmission processvector
项目摘要
PROJECT SUMMARY/ABSTRACT
Over the last decade, infectious disease forecasting has advanced considerably. Using methods derived from
dynamic modeling, statistical inference and numerical weather prediction, forecast systems have been
developed for diseases such as influenza, SARS-CoV-2, dengue and Ebola. These systems have generated
probabilistic forecasts of future epidemic outcomes with quantifiable accuracy and lead times up to 3 months,
and in some instances, have been operationalized to deliver forecasts in real time. Such forecast information
can be used to help manage the timing and distribution of medical countermeasures, to plan hospital and clinic
staffing, and to allocate healthcare supplies in anticipation of patient surges. Ongoing research is needed to
further improve the accuracy of these disease forecasts so that the decisions and actions that are based on
this information are more soundly motivated. To this end, it is vital that the sources of error in infectious
disease forecasts are better understood, that the growth of error during forecast is quantified, and that methods
are developed to control and optimize that error growth in order to improve forecast accuracy. The aim of this
project is to leverage methods that have been employed to understand and quantify error growth in weather
forecasting models and to improve weather forecasting accuracy, and to apply these methods to infectious
disease forecasting systems. Specifically, we will: 1) quantify the nonlinear growth of error within a diversity of
infectious disease forecasting models and then develop methods to optimize that error growth during
forecasting, thus improving forecast accuracy; we hypothesize that the fastest growing mode within disease
forecasting models can be identified using singular vector analysis (SVA); quantified error growth can then be
exploited using optimal perturbation methods, in conjunction with observations and data assimilation
approaches, to generate a more calibrated ensemble forecast that produces more accurate probabilistic
predictions; 2) apply SVA and optimal perturbation methods to a recently validated, spatially explicit model of
influenza in order to understand how uncertainty propagates when observations are missing and to identify
which locations are critical for accurate forecasting throughout the network; we hypothesize these findings can
be used to identify improved, more optimal disease surveillance networks; and 3) develop models to forecast
and project the continued spread of influenza and SARS-CoV-2 internationally; here, we will develop multi-
country spatially-explicit networked metapopulation models capable of accurate simulation and forecasting of
the transmission and spread of seasonal influenza and SARS-CoV-2 within and between countries; we
hypothesize that the intra- and inter-country spread of these diseases can be forecast more accurately with
systems that utilize network model structures. The findings from this project will improve understanding of error
growth in forecast models, improve the accuracy of operational infectious disease forecasting, inform
surveillance practices, and enable more accurate forecast of the spread of disease.
项目总结/摘要
在过去十年中,传染病预测取得了很大进展。使用源自
动力学模式、统计推断和数值天气预报,预报系统已经
针对流感、SARS-CoV-2、登革热和埃博拉等疾病开发的疫苗。这些系统产生了
以可量化的准确性和长达3个月的准备时间对未来流行病结果进行概率预测,
并且在某些情况下,已经被操作化以提供真实的预报。这样的预测信息
可用于帮助管理医疗对策的时间安排和分配,规划医院和诊所
人员配备,并在预期患者激增的情况下分配医疗用品。需要进行研究,
进一步提高这些疾病预测的准确性,以便根据
这些信息的动机更加合理。为此,至关重要的是,传染性疾病的错误来源
更好地理解疾病预测,预测过程中误差的增长是量化的,方法
是为了控制和优化误差增长,以提高预测精度。的目的
项目是利用已采用的方法来了解和量化天气误差增长
预测模型,提高天气预报的准确性,并将这些方法应用于传染病
疾病预测系统具体来说,我们将:1)量化误差的非线性增长的多样性,
传染病预测模型,然后开发方法来优化误差增长,
预测,从而提高预测的准确性;我们假设疾病中增长最快的模式
可以使用奇异向量分析(SVA)来识别预测模型;然后可以量化误差增长,
利用最佳扰动方法,结合观测和数据同化
方法,以生成一个更校准的集合预报,产生更准确的概率
预测; 2)将SVA和最优扰动方法应用于最近验证的空间显式模型,
流感,以了解当观测缺失时不确定性如何传播,并确定
哪些位置对于整个网络的准确预测至关重要;我们假设这些发现可以
用于确定改进的、更优化的疾病监测网络; 3)开发预测模型
并预测流感和SARS-CoV-2在国际上的持续传播;在这里,我们将开发多-
国家空间明确的网络化集合种群模型,能够准确模拟和预测
季节性流感和SARS-CoV-2在国家内部和国家之间的传播和扩散;我们
假设这些疾病的国内和国家间传播可以更准确地预测,
使用网络模型结构的系统。该项目的发现将提高对错误的理解
预测模型的增长,提高业务传染病预测的准确性,
监测做法,并能够更准确地预测疾病的传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY L SHAMAN其他文献
JEFFREY L SHAMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY L SHAMAN', 18)}}的其他基金
Quantifying Error Growth to Improve Infectious Disease Forecast Accuracy
量化误差增长以提高传染病预测准确性
- 批准号:
10623347 - 财政年份:2021
- 资助金额:
$ 66.53万 - 项目类别:
Quantifying Error Growth to Improve Infectious Disease Forecast Accuracy
量化误差增长以提高传染病预测准确性
- 批准号:
10424587 - 财政年份:2021
- 资助金额:
$ 66.53万 - 项目类别:
Development and Dissemination of Operational Real-Time Respiratory Virus Forecast
实时呼吸道病毒预测的开发和传播
- 批准号:
8703891 - 财政年份:2014
- 资助金额:
$ 66.53万 - 项目类别:
Development and Dissemination of Operational Real-Time Respiratory Virus Forecast
实时呼吸道病毒预测的开发和传播
- 批准号:
9102137 - 财政年份:2014
- 资助金额:
$ 66.53万 - 项目类别:
Development and Dissemination of Operational Real-Time Respiratory Virus Forecast
实时呼吸道病毒预测的开发和传播
- 批准号:
9306882 - 财政年份:2014
- 资助金额:
$ 66.53万 - 项目类别:
Influenza Outbreak Prediction: Applying Data Assimilation Methodology to Make...
流感爆发预测:应用数据同化方法来制定...
- 批准号:
8669014 - 财政年份:2011
- 资助金额:
$ 66.53万 - 项目类别:
Influenza Outbreak Prediction: Applying Data Assimilation Methodology to Make...
流感爆发预测:应用数据同化方法来制定...
- 批准号:
8503617 - 财政年份:2011
- 资助金额:
$ 66.53万 - 项目类别:
Influenza Outbreak Prediction: Applying Data Assimilation Methodology to Make...
流感爆发预测:应用数据同化方法来制定...
- 批准号:
8330798 - 财政年份:2011
- 资助金额:
$ 66.53万 - 项目类别:
Influenza Outbreak Prediction: Applying Data Assimilation Methodology to Make...
流感爆发预测:应用数据同化方法来制定...
- 批准号:
8244591 - 财政年份:2011
- 资助金额:
$ 66.53万 - 项目类别:
相似海外基金
Assimilations- und Kontrasteffekte in der sozialen Urteilsbildung: Das Inklusions-Exklusionsmodell als allgemeines Urteilsmodell zur Vorhersage der Richtung und der Größe von Kontexteffekten
社会判断形成中的同化和对比效应:包含-排除模型作为预测情境效应方向和大小的一般判断模型
- 批准号:
136888925 - 财政年份:2009
- 资助金额:
$ 66.53万 - 项目类别:
Research Grants
assimilations of Chinese informations and formation of views on northern region in Japan at early modern times
近代初期中国信息的吸收与日本北部地区观念的形成
- 批准号:
20320098 - 财政年份:2008
- 资助金额:
$ 66.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ECCS-IHCS: Adaptive Network Assimilations Through System Reconfigurability
ECCS-IHCS:通过系统可重构性进行自适应网络同化
- 批准号:
0725914 - 财政年份:2007
- 资助金额:
$ 66.53万 - 项目类别:
Continuing Grant
Determination of the Adjoint Model of the NMC Global and NGMModels and Their Application to 4-D Data Assimilations
NMC Global和NGM模型伴随模型的确定及其在4维数据同化中的应用
- 批准号:
8806553 - 财政年份:1988
- 资助金额:
$ 66.53万 - 项目类别:
Continuing Grant














{{item.name}}会员




