Development and Dissemination of Operational Real-Time Respiratory Virus Forecast
实时呼吸道病毒预测的开发和传播
基本信息
- 批准号:9102137
- 负责人:
- 金额:$ 51.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenovirusesAffectAssimilationsAwarenessBiologyCharacteristicsCitiesCollaborationsCommunicable DiseasesComputing MethodologiesDataDecision MakingDevelopmentDiscriminationDiseaseDisease OutbreaksDisease OutcomeEffectivenessEnsureEpidemiologyFutureGoalsHealthHumanIncidenceIndividualInfectionInfectious Diseases ResearchInfluenzaInterventionLeadLightLung diseasesMeasuresMental HealthMetapneumovirusMethodsModelingNeighborhoodsNew York CityOutcomeParainfluenzaPopulation DynamicsProbabilityProcessPublic HealthQuarantineReadinessRecurrenceResearchResearch InfrastructureResourcesRespiratory syncytial virusRotavirusRunningSchoolsSeasonsSeveritiesStatistical MethodsStatistical ModelsSystemTechniquesTestingTherapeuticTimeTrainingUnited StatesVaccinationViralVirusWeatherWorkbasedisease transmissionepidemiological modelface maskflu transmissionhuman morbidityhuman mortalityimprovedinfluenza outbreakmathematical methodsmathematical modelmeetingsmodels and simulationoperationpathogenresearch and developmentrespiratoryrespiratory virusresponseseasonal influenzasimulationsyndromic surveillancetransmission processuser-friendlyverification and validationweb portal
项目摘要
Recurrent outbreaks of influenza and other respiratory viruses continue to affect human health adversely. A
number of intervention strategies exist to mitigate the progression of these pathogens, including
vaccination, anti-viral therapeutics, public awareness campaigns, face masks, school closure, and
quarantine. Public health agency use of these control strategies is guided by their historical effectiveness
and implemented in light of the latest estimates of infection incidence, severity, and transmissibility;
however, public health officials would be afforded more time to allocate their intervention measures if local
outbreak characteristics, e.g., incidence timing, magnitude and duration, could be accurately and reliably
forecast. Recent work has shown that some characteristics of seasonal influenza outbreaks can be
predicted accurately with lead times of up to 9 weeks. These predictions are generated with a mathematical
model of influenza transmission dynamics that has been recursively optimized using an ensemble data
assimilation technique and real-time observations of infection incidence. In practice, the data assimilation
process entrains the observational estimates of infection incidence into evolving mathematical simulations
of pathogen transmission dynamics, and in so doing trains those model simulations, through state space
estimation and parameter optimization, to better match the observed unfolding outbreak. Those trained
simulations, having been optimized with the most recent observations, are then integrated into the future to
generate a distribution of potential disease outcomes. This forecasting framework has been validated for
accuracy and reliability, and during the 2012-2013 influenza season was used to generate weekly real-time
predictions of influenza peak timing for 108 cities throughout the United States. For this project, we will build
on and expand these forecast efforts. Specifically, we will: 1) Work to improve influenza forecast accuracy
and reliability through development of multi-model forecast approaches, such as have been used in weather
prediction; 2) Develop, test and analyze analogous forecast frameworks for other recurrent respiratory
pathogens, such as rotavirus and respiratory syncytial virus; 3) Establish a dedicated operation center for
maintaining, running and disseminating real-time weekly forecasts of influenza and other respiratory
viruses; and 4) Work with public health officials in New York City, and, using their more detailed syndromic
surveillance, explore the potential for more granular, borough or neighborhood-scale forecast of influenza
and other viruses. These efforts will lead to an improved understanding of the benefits and limits of
respiratory disease prediction, and the intelligent interpretation and incorporation of real-time forecasts in
health response decision-making.
流感和其他呼吸道病毒的反复爆发继续对人类健康产生不利影响。一
目前有许多干预策略可以减缓这些病原体的进展,包括
疫苗接种、抗病毒治疗、公众宣传活动、口罩、学校关闭,
检疫.公共卫生机构对这些控制策略的使用以其历史有效性为指导
并根据对感染发生率、严重程度和传染性的最新估计加以实施;
然而,如果地方政府采取干预措施,
爆发特征,例如,事件发生的时间,大小和持续时间,可以准确可靠地
预报.最近的研究表明,季节性流感暴发的一些特征可能是
预测准确,交货期长达9周。这些预测是由一个数学
使用集合数据递归优化的流感传播动力学模型
同化技术和感染发生率的实时观察。在实践中,数据同化
这一过程将感染发生率的观测估计带入了不断发展的数学模拟中
病原体传播动力学,并在这样做的训练这些模型模拟,通过状态空间
估计和参数优化,以更好地匹配观察到的展开爆发。培训的人
然后,利用最近的观测结果对模拟进行优化,并将其集成到未来,
产生潜在疾病结果的分布。这一预测框架已得到验证,
准确性和可靠性,并在2012-2013年流感季节用于生成每周实时
对全美108个城市流感高峰时间的预测。在这个项目中,我们将建立
并扩大这些预测工作。具体而言,我们将:1)努力提高流感预测的准确性
通过发展多模式预报方法,例如在天气预报中使用的方法,
预测; 2)开发、测试和分析其他复发性呼吸道疾病的类似预测框架
病原体,如轮状病毒和呼吸道合胞病毒; 3)建立专门的运营中心,
维持、运行和传播流感和其他呼吸系统疾病的实时每周预报
4)与纽约市的公共卫生官员合作,并使用他们更详细的症状
监测,探索对流感进行更精细、自治市或社区规模预测的可能性
和其他病毒。这些努力将使人们更好地了解
呼吸道疾病预测,以及智能解释和实时预测的结合,
卫生应急决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY L SHAMAN其他文献
JEFFREY L SHAMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY L SHAMAN', 18)}}的其他基金
Quantifying Error Growth to Improve Infectious Disease Forecast Accuracy
量化误差增长以提高传染病预测准确性
- 批准号:
10623347 - 财政年份:2021
- 资助金额:
$ 51.07万 - 项目类别:
Quantifying Error Growth to Improve Infectious Disease Forecast Accuracy
量化误差增长以提高传染病预测准确性
- 批准号:
10424587 - 财政年份:2021
- 资助金额:
$ 51.07万 - 项目类别:
Quantifying Error Growth to Improve Infectious Disease Forecast Accuracy
量化误差增长以提高传染病预测准确性
- 批准号:
10278807 - 财政年份:2021
- 资助金额:
$ 51.07万 - 项目类别:
Development and Dissemination of Operational Real-Time Respiratory Virus Forecast
实时呼吸道病毒预测的开发和传播
- 批准号:
8703891 - 财政年份:2014
- 资助金额:
$ 51.07万 - 项目类别:
Development and Dissemination of Operational Real-Time Respiratory Virus Forecast
实时呼吸道病毒预测的开发和传播
- 批准号:
9306882 - 财政年份:2014
- 资助金额:
$ 51.07万 - 项目类别:
Influenza Outbreak Prediction: Applying Data Assimilation Methodology to Make...
流感爆发预测:应用数据同化方法来制定...
- 批准号:
8669014 - 财政年份:2011
- 资助金额:
$ 51.07万 - 项目类别:
Influenza Outbreak Prediction: Applying Data Assimilation Methodology to Make...
流感爆发预测:应用数据同化方法来制定...
- 批准号:
8503617 - 财政年份:2011
- 资助金额:
$ 51.07万 - 项目类别:
Influenza Outbreak Prediction: Applying Data Assimilation Methodology to Make...
流感爆发预测:应用数据同化方法来制定...
- 批准号:
8330798 - 财政年份:2011
- 资助金额:
$ 51.07万 - 项目类别:
Influenza Outbreak Prediction: Applying Data Assimilation Methodology to Make...
流感爆发预测:应用数据同化方法来制定...
- 批准号:
8244591 - 财政年份:2011
- 资助金额:
$ 51.07万 - 项目类别:
相似海外基金
cGAS-STING Pathway Targeting Replicative Adenoviruses with CD46 Tropism and AFP Promoter Conditional Replication Restriction for the Treatment of Hepatocellular Carcinoma
cGAS-STING 通路靶向具有 CD46 趋向性和 AFP 启动子的复制腺病毒条件性复制限制用于治疗肝细胞癌
- 批准号:
10436626 - 财政年份:2021
- 资助金额:
$ 51.07万 - 项目类别:
Glioma therapy with oncolytic adenoviruses and immunometabolic adjuvants
溶瘤腺病毒和免疫代谢佐剂治疗胶质瘤
- 批准号:
10557162 - 财政年份:2021
- 资助金额:
$ 51.07万 - 项目类别:
Molecular therapy of replication-competent adenoviruses targeting characteristic gene mutations found in mesothelioma
针对间皮瘤中发现的特征基因突变的具有复制能力的腺病毒的分子疗法
- 批准号:
21K08199 - 财政年份:2021
- 资助金额:
$ 51.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Glioma therapy with oncolytic adenoviruses and immunometabolic adjuvants
溶瘤腺病毒和免疫代谢佐剂治疗胶质瘤
- 批准号:
10330464 - 财政年份:2021
- 资助金额:
$ 51.07万 - 项目类别:
Structural characterization of nucleoprotein cores of human adenoviruses
人腺病毒核蛋白核心的结构表征
- 批准号:
9807741 - 财政年份:2019
- 资助金额:
$ 51.07万 - 项目类别:
Molecular biology and pathogenesis of fowl adenoviruses
禽腺病毒的分子生物学和发病机制
- 批准号:
41625-2013 - 财政年份:2018
- 资助金额:
$ 51.07万 - 项目类别:
Discovery Grants Program - Individual
The therapeutic strategies with augmented replications of oncolytic adenoviruses for malignant mesothelioma
溶瘤腺病毒增强复制治疗恶性间皮瘤的治疗策略
- 批准号:
18K15937 - 财政年份:2018
- 资助金额:
$ 51.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular biology and pathogenesis of fowl adenoviruses
禽腺病毒的分子生物学和发病机制
- 批准号:
41625-2013 - 财政年份:2017
- 资助金额:
$ 51.07万 - 项目类别:
Discovery Grants Program - Individual
Research on detection of novel adenoviruses by genetic methods
新型腺病毒的基因检测研究
- 批准号:
16K09118 - 财政年份:2016
- 资助金额:
$ 51.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring the effects of nutrient deprivation on T cells and oncolytic adenoviruses, in order to create immune activators for tumour therapy
探索营养剥夺对 T 细胞和溶瘤腺病毒的影响,以创造用于肿瘤治疗的免疫激活剂
- 批准号:
1813152 - 财政年份:2016
- 资助金额:
$ 51.07万 - 项目类别:
Studentship














{{item.name}}会员




