Missing Data Matters: Substance Use Disorder Clinical Trials
缺失数据很重要:药物使用障碍临床试验
基本信息
- 批准号:10306893
- 负责人:
- 金额:$ 27.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Program Director/Principal Investigator (Last, First, Middle): Scharfstein, Daniel, Oscar
Project Summary/Abstract
Missing outcome data threaten the validity of randomized clinical trials because inference about treatment effects
then necessarily relies on untestable assumptions, which wrongly stated can lead to incorrect conclusions. While
it is widely recognized that evaluating the sensitivity of trial results to assumptions about the missing data mech-
anism should be a mandatory component of reporting, rigorous sensitivity analyses are not routinely reported.
Likely explanations include inadequate knowledge translation by statistical methodologists to both principal in-
vestigators and their statistical collaborators as well as lack of software.
Substance use disorder clinical trials are known to suffer from high rates of missing data. Unlike regulatory
trials where missing data are primarily the result of premature study withdrawal, individuals in substance use
disorder trials tend to intermittently skip their scheduled outcome assessments. This produces an explosion of
“non-monotone” missing data patterns that makes sensitivity analysis methodologically and computationally chal-
lenging. There has been relatively little research on sensitivity analysis procedures for analyzing such data and
the procedures that have been developed are anchored to assumptions that are problematic. Thus, investigators
are faced with challenging analytic barriers and the conclusions they draw from their trials may be flawed.
In this three-year proposal, we will reanalyze 29 clinical trials conducted by NIDA's Clinical Trials Network (CTN),
and made publicly available on NIDA's DataShare website, to evaluate their robustness to missing data assump-
tions through rigorous sensitivity analysis. Since adequate tools for conducting sensitivity analysis of studies
with highly non-monotone missing data patterns do not yet exist, we plan to develop, implement and dissemi-
nate (through journal articles, short courses and webinars) an innovative sensitivity analysis methodology and
open-source, user-friendly software to evaluate the robustness, to missing data assumptions, of trials in which
binary outcomes (e.g., substance use) are scheduled to be repeatedly collected at fixed points in time after ran-
domization and participants intermittently skip their scheduled assessments. Our tool will be developed by an
interdisciplinary team of biostatisticians and substance use disorder treatment experts, with input from an advi-
sory board comprised of highly regarded statistical experts and leading scientists in the substance use disorder
community. Through reanalysis of the NIDA's CTN trials using our tool, we will be better able to understand
the impact of missing data assumptions on the evaluation of the studied interventions. Additionally, demonstrat-
ing the importance and utility of our tool to our advisory board and to the substance use disorder community
more broadly stands to increase the likelihood of adoption. Finally, the development, testing, and dissemination
of this innovative statistical tool can serve as a template for other scientific domains, making “stress-testing” to
untestable missing data assumptions a more routine component of scientific reporting.
项目负责人/主要研究者(最后,第一,中间):Scharfstein,丹尼尔,奥斯卡
项目总结/摘要
由于对治疗效果的推断,
然后必然依赖于不可检验的假设,错误的陈述可能导致错误的结论。而
人们普遍认为,评估试验结果对缺失数据机制假设的敏感性,
非敏感性分析应是报告的一个强制性组成部分,严格的敏感性分析并不是例行报告。
可能的解释包括统计方法学家对两个主要领域的知识翻译不足-
调查人员及其统计合作者以及缺乏软件。
物质使用障碍临床试验是众所周知的遭受高比率的数据缺失。不同于监管
缺失数据主要是由于提前退出研究、使用药物的个人
疾病试验往往会间歇性地跳过预定的结果评估。这就产生了一个爆炸,
“非单调”缺失数据模式使得敏感性分析在方法和计算上具有挑战性,
我是说,关于分析这些数据的敏感性分析程序的研究相对较少,
已经制定的程序所依据的假设是有问题的。因此,调查人员
面临着具有挑战性的分析障碍,他们从试验中得出的结论可能会受到质疑。
在这个为期三年的提案中,我们将重新分析NIDA临床试验网络(CTN)进行的29项临床试验,
并在NIDA的DataShare网站上公开发布,以评估其对缺失数据的鲁棒性。
通过严格的敏感性分析。由于有足够的工具对研究进行敏感性分析,
由于尚不存在高度非单调的缺失数据模式,我们计划开发、实施和传播-
nate(通过期刊文章,短期课程和网络研讨会)创新的敏感性分析方法,
开源、用户友好的软件,用于评估试验对缺失数据假设的稳健性,
二元结果(例如,(物质使用)计划在运行后的固定时间点重复收集,
圆顶化和参与者间歇性地跳过他们预定的评估。我们的工具将由
生物统计学家和物质使用障碍治疗专家的跨学科团队,
一个由高度重视的统计专家和物质使用障碍方面的领先科学家组成的委员会
社区通过使用我们的工具重新分析NIDA的CTN试验,我们将能够更好地理解
缺失数据假设对所研究干预措施评价的影响。此外,示范-
将我们的工具的重要性和实用性介绍给我们的咨询委员会和物质使用障碍社区
更广泛地增加了采用的可能性。最后,开发、测试和传播
这种创新的统计工具可以作为其他科学领域的模板,使“压力测试”,
不可检验的缺失数据假设是科学报告中更常规的组成部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Oscar Scharfstein其他文献
Daniel Oscar Scharfstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Oscar Scharfstein', 18)}}的其他基金
Missing Data Matters: Substance Use Disorder Clinical Trials
缺失数据很重要:药物使用障碍临床试验
- 批准号:
9756356 - 财政年份:2018
- 资助金额:
$ 27.06万 - 项目类别:
Missing Data Matters: Substance Use Disorder Clinical Trials
缺失数据很重要:药物使用障碍临床试验
- 批准号:
9923614 - 财政年份:2018
- 资助金额:
$ 27.06万 - 项目类别:
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Dark Data from the White Continent: New Light on Five Decades of Vertebrate Paleontology Collections from the Triassic Fremouw Formation of Antarctica
来自白色大陆的暗数据:对南极洲三叠纪 Fremouw 组的五个十年的脊椎动物古生物学收藏的新认识
- 批准号:
2313242 - 财政年份:2024
- 资助金额:
$ 27.06万 - 项目类别:
Standard Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 27.06万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 27.06万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
- 批准号:
2327422 - 财政年份:2024
- 资助金额:
$ 27.06万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 27.06万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 27.06万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 27.06万 - 项目类别:
Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
- 批准号:
2412195 - 财政年份:2024
- 资助金额:
$ 27.06万 - 项目类别:
Standard Grant
Research Infrastructure: CC* Data Storage: Foundational Campus Research Storage for Digital Transformation
研究基础设施:CC* 数据存储:数字化转型的基础校园研究存储
- 批准号:
2346636 - 财政年份:2024
- 资助金额:
$ 27.06万 - 项目类别:
Standard Grant
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
$ 27.06万 - 项目类别:
Standard Grant