Single cell analysis of mitotic regeneration in the mouse vestibular system
小鼠前庭系统有丝分裂再生的单细胞分析
基本信息
- 批准号:10282440
- 负责人:
- 金额:$ 18.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAccelerationAdoptedAffectAuditoryAwardBasic ScienceBehaviorBioinformaticsBiologicalBiologyCell LineageCell MaintenanceCell ProliferationCell divisionCellsClinicalDataDevelopmentEpithelialEquilibriumEventFacultyFunctional disorderFundingGene Expression ProfileGenesGeneticGoalsGrantHair CellsHearingHearing problemHeterogeneityHomeostasisHumanIn VitroIndividualInjuryKnowledgeLGR5 geneLabyrinthLeadLearningLocationMaintenanceMammalsMentorsMitosisMitoticModelingMolecularMusNatural regenerationNeonatalOlfactory PathwaysOperative Surgical ProceduresOrganOtolaryngologyOtologyPathway interactionsPatientsPhysiciansPopulationProliferatingRegenerative MedicineResearchScientistSensorineural Hearing LossSensorySensory DisordersSignal TransductionSkinSomatosensory CortexSupporting CellSurgeonSystemTechniquesTechnologyTestingTherapeuticTissuesTrainingTraining ProgramsUtricle structureWorkbeta cateninbody systemcell behaviorequilibration disorderexperimental studyhair cell regenerationhearing impairmenthearing restorationin silicoin vivoin vivo Modelinjuredinsightinterestmedical schoolsmembermouse geneticsmouse modelneonatal injuryneonatal miceoverexpressionpermanent hearing lossprogenitorprogramsregeneration following injuryregenerativeregenerative therapyself-renewalsingle cell analysissingle-cell RNA sequencingskillssmall moleculespatiotemporalstemstem cellstissue regenerationtranscription factorundergraduate student
项目摘要
PROJECT SUMMARY (ABSTRACT)
Sensorineural hearing loss and vestibular dysfunction are most common sensory disorders affecting
millions worldwide 1–3. Auditory and vestibular functions require mechanosensitive hair cells, with hair cell loss
leading to permanent hearing loss and disabling vestibular dysfunction/hypofunction. Recently, the neonatal
mouse utricle, one of five vestibular organs that relies on hair cells to detect linear acceleration, was shown to
harbor robust numbers of progenitor cells 6,7. However, while the existence of both mitotic and non-mitotic
mechanisms in mammals is now clear, we currently lack understanding of the timing, location, and mechanisms
of cell fate decisions. In other systems, like the skin, it is known that fate decisions are made downstream of
stem cells and their transit amplifying populations, but we do not yet know the fates of these putative populations
in the inner ear 39. A central regulator of tissue homeostasis and stem cell maintenance across many organs is
the Wnt pathway 8, and this signaling cascade is upregulated in the inner ear 12. I hypothesize that following injury,
mitotic regeneration leads to different cell lineages in the neonatal utricular sensory epithelium, and that Wnt
activation directs more supporting cells to adopt the mitotic cell lineage. Gaining an in-depth understanding of
the sequence of events that drive mitotic regeneration post injury will reveal potential approaches to regenerate
hair cells and supporting cells, with the ultimate goal of restoring hearing and balance functions.
As a surgeon-scientist with a passion for treating patients with hearing and balance disorders, I am well
equipped to tackle the scientific questions outlined. My interests in the basic sciences stem from my
undergraduate years working on the genetics and development of the somatosensory cortex and studying the
olfactory system. During medical school, I saw the lack of therapies of patients with permanent hearing loss as
an opportunity, working on hair cell regeneration under the tutelage of renowned scientists, including Dr. Stefan
Heller and Dr. Roel Nusse (Jan et al., 2013, Development). As a resident in otolaryngology, I focused on gaining
the clinical and surgical expertise to treat patients and had the opportunity to continue basic science research
with a focus on hearing loss under Dr. Konstantina Stankovic. In order to gain advanced surgical skills and learn
state of the art techniques to study inner ear regeneration, I completed the T32 funded Clinician Scientist Training
Program in Otology & Neurotology. This program further allowed me to collect preliminary data and chart my
goals for this proposal as a new faculty member at UCSF. While I have extensive training in inner ear biology,
my knowledge is lacking in advanced mouse genetics, new single cell RNAseq technologies, and advanced
bioinformatics. Under the guidance of renowned stem cell physician-scientist Dr. Ophir Klein as my mentor at
UCSF, and expert inner ear surgeon-scientist, Dr. Alan Cheng as my co-mentor at Stanford, I am confident this
award will prepare me for scientific independence through the R01 grant mechanism.
项目概要(摘要)
感音神经性听力损失和前庭功能障碍是最常见的感觉障碍
全球数以百万计 1-3。听觉和前庭功能需要机械敏感的毛细胞,而毛细胞会丢失
导致永久性听力损失和前庭功能障碍/功能减退。近来,新生儿
小鼠椭圆囊是依赖毛细胞检测线性加速度的五个前庭器官之一,被证明可以
拥有大量的祖细胞 6,7。然而,虽然有丝分裂和非有丝分裂都存在
哺乳动物的机制现已清楚,但我们目前缺乏对时间、地点和机制的了解
细胞命运的决定。在其他系统中,例如皮肤,众所周知,命运决定是在下游做出的
干细胞及其转运扩增群体,但我们还不知道这些假定群体的命运
在内耳 39. 许多器官的组织稳态和干细胞维持的中央调节器是
Wnt 通路 8,并且该信号级联在内耳 12 中上调。我假设受伤后,
有丝分裂再生导致新生儿椭圆囊感觉上皮细胞谱系不同,并且 Wnt
激活引导更多支持细胞采用有丝分裂细胞谱系。深入了解
损伤后驱动有丝分裂再生的事件顺序将揭示潜在的再生方法
毛细胞和支持细胞,最终目标是恢复听力和平衡功能。
作为一名热衷于治疗听力和平衡障碍患者的外科医生科学家,我很好
有能力解决概述的科学问题。我对基础科学的兴趣源于我
本科期间致力于体感皮层的遗传学和发育并研究
嗅觉系统。在医学院期间,我发现永久性听力损失患者缺乏治疗
一个机会,在包括 Stefan 博士在内的著名科学家的指导下致力于毛细胞再生
Heller 和 Roel Nusse 博士(Jan 等人,2013 年,开发)。作为一名耳鼻喉科住院医师,我专注于获得
治疗患者的临床和外科专业知识,并有机会继续基础科学研究
在康斯坦蒂娜·斯坦科维奇 (Konstantina Stankovic) 博士的指导下,重点关注听力损失问题。为了获得先进的手术技能并学习
研究内耳再生的最先进技术,我完成了 T32 资助的临床科学家培训
耳科和神经耳科课程。这个程序进一步让我能够收集初步数据并绘制我的图表
作为加州大学旧金山分校的新教员,该提案的目标。虽然我接受过内耳生物学方面的广泛培训,
我缺乏先进的小鼠遗传学、新的单细胞 RNAseq 技术和先进的知识
生物信息学。在著名干细胞医学科学家 Ophir Klein 博士作为我的导师的指导下
加州大学旧金山分校 (UCSF) 以及内耳外科医生专家 Alan Cheng 博士作为我在斯坦福大学的共同导师,我对此充满信心
该奖项将使我通过 R01 资助机制为科学独立做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taha A Jan其他文献
Taha A Jan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taha A Jan', 18)}}的其他基金
Single cell analysis of mitotic regeneration in the mouse vestibular system
小鼠前庭系统有丝分裂再生的单细胞分析
- 批准号:
10700828 - 财政年份:2021
- 资助金额:
$ 18.83万 - 项目类别:
Single cell analysis of mitotic regeneration in the mouse vestibular system
小鼠前庭系统有丝分裂再生的单细胞分析
- 批准号:
10416080 - 财政年份:2021
- 资助金额:
$ 18.83万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 18.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B)