Single cell analysis of mitotic regeneration in the mouse vestibular system
小鼠前庭系统有丝分裂再生的单细胞分析
基本信息
- 批准号:10416080
- 负责人:
- 金额:$ 18.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAccelerationAdoptedAffectAuditoryAwardBasic ScienceBehaviorBioinformaticsBiologicalBiologyCell LineageCell MaintenanceCell ProliferationCell divisionCellsClinicalDataDevelopmentEpithelialEquilibriumEventFacultyFunctional disorderFundingGene Expression ProfileGenesGeneticGoalsGrantHair CellsHearingHearing problemHeterogeneityHomeostasisHumanIn VitroIndividualInjuryKnowledgeLGR5 geneLabyrinthLeadLearningLocationMaintenanceMammalsMentorsMitosisMitoticModelingMolecularMusNatural regenerationNeonatalOlfactory PathwaysOperative Surgical ProceduresOrganOtolaryngologyOtologyPathway interactionsPatientsPersonsPhysiciansPopulationProliferatingRegenerative MedicineResearchScientistSensorineural Hearing LossSensorySensory DisordersSignal TransductionSkinSomatosensory CortexSupporting CellSurgeonSystemTechniquesTechnologyTherapeuticTissuesTrainingTraining ProgramsUtricle structureWorkbeta cateninbody systemcell behaviorequilibration disorderexperimental studyhair cell regenerationhearing impairmenthearing restorationin silicoin vivoin vivo Modelinjuredinsightinterestmedical schoolsmembermouse geneticsmouse modelneonatal injuryneonatal miceoverexpressionpermanent hearing lossprogenitorprogramsregeneration following injuryregenerativeregenerative therapyself-renewalsingle cell analysissingle-cell RNA sequencingskillssmall moleculespatiotemporalstemstem cellstissue regenerationtranscription factorundergraduate student
项目摘要
PROJECT SUMMARY (ABSTRACT)
Sensorineural hearing loss and vestibular dysfunction are most common sensory disorders affecting
millions worldwide 1–3. Auditory and vestibular functions require mechanosensitive hair cells, with hair cell loss
leading to permanent hearing loss and disabling vestibular dysfunction/hypofunction. Recently, the neonatal
mouse utricle, one of five vestibular organs that relies on hair cells to detect linear acceleration, was shown to
harbor robust numbers of progenitor cells 6,7. However, while the existence of both mitotic and non-mitotic
mechanisms in mammals is now clear, we currently lack understanding of the timing, location, and mechanisms
of cell fate decisions. In other systems, like the skin, it is known that fate decisions are made downstream of
stem cells and their transit amplifying populations, but we do not yet know the fates of these putative populations
in the inner ear 39. A central regulator of tissue homeostasis and stem cell maintenance across many organs is
the Wnt pathway 8, and this signaling cascade is upregulated in the inner ear 12. I hypothesize that following injury,
mitotic regeneration leads to different cell lineages in the neonatal utricular sensory epithelium, and that Wnt
activation directs more supporting cells to adopt the mitotic cell lineage. Gaining an in-depth understanding of
the sequence of events that drive mitotic regeneration post injury will reveal potential approaches to regenerate
hair cells and supporting cells, with the ultimate goal of restoring hearing and balance functions.
As a surgeon-scientist with a passion for treating patients with hearing and balance disorders, I am well
equipped to tackle the scientific questions outlined. My interests in the basic sciences stem from my
undergraduate years working on the genetics and development of the somatosensory cortex and studying the
olfactory system. During medical school, I saw the lack of therapies of patients with permanent hearing loss as
an opportunity, working on hair cell regeneration under the tutelage of renowned scientists, including Dr. Stefan
Heller and Dr. Roel Nusse (Jan et al., 2013, Development). As a resident in otolaryngology, I focused on gaining
the clinical and surgical expertise to treat patients and had the opportunity to continue basic science research
with a focus on hearing loss under Dr. Konstantina Stankovic. In order to gain advanced surgical skills and learn
state of the art techniques to study inner ear regeneration, I completed the T32 funded Clinician Scientist Training
Program in Otology & Neurotology. This program further allowed me to collect preliminary data and chart my
goals for this proposal as a new faculty member at UCSF. While I have extensive training in inner ear biology,
my knowledge is lacking in advanced mouse genetics, new single cell RNAseq technologies, and advanced
bioinformatics. Under the guidance of renowned stem cell physician-scientist Dr. Ophir Klein as my mentor at
UCSF, and expert inner ear surgeon-scientist, Dr. Alan Cheng as my co-mentor at Stanford, I am confident this
award will prepare me for scientific independence through the R01 grant mechanism.
项目总结(摘要)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taha A Jan其他文献
Taha A Jan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taha A Jan', 18)}}的其他基金
Single cell analysis of mitotic regeneration in the mouse vestibular system
小鼠前庭系统有丝分裂再生的单细胞分析
- 批准号:
10700828 - 财政年份:2021
- 资助金额:
$ 18.83万 - 项目类别:
Single cell analysis of mitotic regeneration in the mouse vestibular system
小鼠前庭系统有丝分裂再生的单细胞分析
- 批准号:
10282440 - 财政年份:2021
- 资助金额:
$ 18.83万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 18.83万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 18.83万 - 项目类别:
Standard Grant