Data Analysis Core for the Dietary Biomarkers Development Center at Harvard University
哈佛大学膳食生物标志物开发中心的数据分析核心
基本信息
- 批准号:10289797
- 负责人:
- 金额:$ 20.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-16 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:BenchmarkingBioinformaticsBiological MarkersBiometryCalibrationClinical TrialsCohort StudiesCollaborationsConsultationsDataData AnalysesData Coordinating CenterData SetDevelopmentDietDietary InterventionDietary PracticesDietary intakeDiscriminant AnalysisDiseaseDisease OutcomeDoseDrug KineticsEatingEnsureEpidemiologyEquationEthnic groupEvaluationFoodFood AnalysisFutureHealthHigh Performance ComputingIncidenceIndividualInterventionKineticsMeasurementMediationMendelian randomizationMetabolicMethodologyMethodsModelingModificationNutritionalPerformancePhasePlasmaProductionProtocols documentationQuality ControlSamplingSecureTimeUniversitiesUrineValidationWorkanalytical methodbasebiomarker developmentbiomarker discoverybiomarker performancebiomarker validationclinical phenotypecluster computingcohortdata exchangedata harmonizationdata managementdata sharingdata standardsdata submissiondesigndietaryepidemiology studyfeedinggenome wide association studygut microbiotahigh dimensionalityimprovedinterdisciplinary approachinterestlarge datasetsmachine learning methodmetabolomicsmulti-ethnicmultiple omicsnovelnutritionpower analysisprospectiveracial and ethnicresponsesexstatisticssynergism
项目摘要
ABSTRACT/SUMMARY – DATA ANALYSIS CORE
The Data Analysis Core (DAC) aims to provide statistical expertise and programming support via a
transdisciplinary approach during the design and implementation of the Biomarkers Project (BP). The DAC will
actively participate in the BP and other Core activities, while maximizing the efficiency, avoiding duplication of
efforts, and improving the synergy among the Dietary Biomarker Development Center (DBDC) at Harvard
University. The DAC will participate in the consortium-wide planning activities and provide consultations in
developing common strategies and protocols for the dietary intervention. The DAC will work with the other
DBDCs and Data Coordinating Center (DCC) in determining the final statistical analytical strategies for the
biomarker analysis and performance. The specific aims are: Aim 1: To develop and implement methods for
biomarker discovery and validation across all stages of the Biomarkers Project. We will devise data analysis
strategies for comparing the dietary biomarker performance against the dietary intake assessment data and
benchmark biomarker data in an existing dietary feeding trial and several cohort studies with multi-ethnic
samples. Aim 2: To develop common statistical analytical strategies for the biomarker analysis and
performance applicable across different DBDCs. This Core will work with other DBDCs and the DCC in
determining the final design and analytical strategies for the biomarker analysis and performance evaluation.
Aim 3: To manage and maintain large datasets and ensure timely data sharing and submission to the DCC.
This DAC will be responsible for managing the data entry, cleaning and analyzing the data generated by our
DBDC. The DAC will work together with other DBDCs and DCC to harmonize data across platforms,
standardize data management, QC, and analytic methods across DBDCs. Aim 4: To interface nutrition,
epidemiology, bioinformatics/biostatistics, and metabolomics, and ensure that cutting-edge measurement error
correction models and multi-omics integrations are incorporated into future nutritional epidemiologic studies of
disease outcomes. Whenever appropriate, all analyses will assess specific effects by sex and across different
racial/ethnic groups. As part of the transdisciplinary team of the DBDC at Harvard University, the DAC will
develop and curate calibrated biomarkers, refined clinical phenotypes and summary statistics for use in future
epidemiological analyses of food intake and prospective associations with disease incidence and other clinical
phenotypes of interest, allowing measurement error corrections and further integration with multi-omics
datasets, such as gut microbiota and genome-wide association studies in existing large cohort studies at
Harvard.
摘要/总结 – 数据分析核心
数据分析核心 (DAC) 旨在通过
生物标志物项目(BP)的设计和实施过程中采用跨学科方法。 DAC 将
积极参与BP等核心活动,同时最大化效率,避免重复
努力,并提高哈佛大学膳食生物标志物开发中心(DBDC)之间的协同作用
大学。 DAC 将参与联盟范围内的规划活动并提供咨询
制定饮食干预的共同策略和方案。 DAC 将与另一个一起工作
DBDC 和数据协调中心 (DCC) 确定最终的统计分析策略
生物标志物分析和性能。具体目标是: 目标 1:制定并实施方法
生物标志物项目各个阶段的生物标志物发现和验证。我们将设计数据分析
将膳食生物标志物性能与膳食摄入评估数据进行比较的策略
现有膳食喂养试验和多项多种族队列研究中的基准生物标志物数据
样品。目标 2:开发用于生物标志物分析和分析的通用统计分析策略
适用于不同 DBDC 的性能。该核心将与其他 DBDC 和 DCC 一起工作
确定生物标志物分析和性能评估的最终设计和分析策略。
目标 3:管理和维护大型数据集并确保及时共享数据并提交给 DCC。
该 DAC 将负责管理数据输入、清理和分析我们生成的数据
DBDC。 DAC 将与其他 DBDC 和 DCC 合作,协调跨平台的数据,
标准化 DBDC 中的数据管理、QC 和分析方法。目标 4:连接营养,
流行病学、生物信息学/生物统计学和代谢组学,并确保尖端的测量误差
校正模型和多组学整合被纳入未来的营养流行病学研究
疾病结果。在适当的情况下,所有分析都将评估按性别和不同性别划分的具体影响
种族/族裔群体。作为哈佛大学 DBDC 跨学科团队的一部分,DAC 将
开发和管理校准的生物标志物、完善的临床表型和汇总统计数据以供将来使用
食物摄入量的流行病学分析以及与疾病发生率和其他临床的前瞻性关联
感兴趣的表型,允许测量误差校正并进一步与多组学集成
数据集,例如现有大型队列研究中的肠道微生物群和全基因组关联研究
哈佛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liming Liang其他文献
Liming Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liming Liang', 18)}}的其他基金
Data Analysis Core for the Dietary Biomarkers Development Center at Harvard University
哈佛大学膳食生物标志物开发中心的数据分析核心
- 批准号:
10461135 - 财政年份:2021
- 资助金额:
$ 20.64万 - 项目类别:
Data Analysis Core for the Dietary Biomarkers Development Center at Harvard University
哈佛大学膳食生物标志物开发中心的数据分析核心
- 批准号:
10649591 - 财政年份:2021
- 资助金额:
$ 20.64万 - 项目类别:
Inter-generational Link of Cardio-Metabolic Risk: Integrate Multi-OMICs with Birth Cohort
心脏代谢风险的代际联系:将多组学与出生队列相结合
- 批准号:
10214809 - 财政年份:2019
- 资助金额:
$ 20.64万 - 项目类别:
Inter-generational Link of Cardio-Metabolic Risk: Integrate Multi-OMICs with Birth Cohort
心脏代谢风险的代际联系:将多组学与出生队列相结合
- 批准号:
9915936 - 财政年份:2019
- 资助金额:
$ 20.64万 - 项目类别:
Inter-generational Link of Cardio-Metabolic Risk: Integrate Multi-OMICs with Birth Cohort
心脏代谢风险的代际联系:将多组学与出生队列相结合
- 批准号:
10437596 - 财政年份:2019
- 资助金额:
$ 20.64万 - 项目类别:
相似海外基金
Conference: Global Bioinformatics Education Summit 2024 — Energizing Communities to Power the Bioeconomy Workforce
会议:2024 年全球生物信息学教育峰会 — 激励社区为生物经济劳动力提供动力
- 批准号:
2421267 - 财政年份:2024
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant
Open Access Block Award 2024 - EMBL - European Bioinformatics Institute
2024 年开放获取区块奖 - EMBL - 欧洲生物信息学研究所
- 批准号:
EP/Z532678/1 - 财政年份:2024
- 资助金额:
$ 20.64万 - 项目类别:
Research Grant
Conference: The 9th Workshop on Biostatistics and Bioinformatics
会议:第九届生物统计与生物信息学研讨会
- 批准号:
2409876 - 财政年份:2024
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant
PDB Management by The Research Collaboratory for Structural Bioinformatics
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
2321666 - 财政年份:2024
- 资助金额:
$ 20.64万 - 项目类别:
Cooperative Agreement
PAML 5: A friendly and powerful bioinformatics resource for phylogenomics
PAML 5:用于系统基因组学的友好且强大的生物信息学资源
- 批准号:
BB/X018571/1 - 财政年份:2024
- 资助金额:
$ 20.64万 - 项目类别:
Research Grant
Building a Bioinformatics Ecosystem for Agri-Ecologists
为农业生态学家构建生物信息学生态系统
- 批准号:
BB/X018768/1 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Research Grant
Integrative viral genomics and bioinformatics platform
综合病毒基因组学和生物信息学平台
- 批准号:
MC_UU_00034/5 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Intramural
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Continuing Grant
Planning Proposal: CREST Center in Bioinformatics
规划方案:CREST生物信息学中心
- 批准号:
2334642 - 财政年份:2023
- 资助金额:
$ 20.64万 - 项目类别:
Standard Grant














{{item.name}}会员




