Exploring the Use of Deep Learning Neural Networks to Improve Dementia Detection: Automating Coding of the Clock-Drawing Test
探索使用深度学习神经网络来改进痴呆症检测:自动绘制时钟测试编码
基本信息
- 批准号:10293176
- 负责人:
- 金额:$ 40.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgeAgingAlgorithmsAlzheimer&aposs disease related dementiaAlzheimer&aposs disease testAreaCategoriesClassificationClinical ResearchCodeCognitionComparative StudyComplexComprehensionConsumptionDataDementiaDetectionDevelopmentDocumentationElderlyElementsError SourcesEvaluationFamily health statusFundingHandHealthHealthcare SystemsHumanImageImpaired cognitionIndividualIntelligenceLeadLongitudinal StudiesMachine LearningManualsMeasuresMedicareMemoryMemory impairmentMethodologyMethodsModelingNational Institute on AgingNeural Network SimulationPaperPerformancePopulationPublic HealthResearchResearch PersonnelResearch SupportRespondentSamplingScreening procedureSupport SystemSurveysSystemTabletsTechniquesTestingTimeTrainingValidity and ReliabilityVisuospatialWritingartificial neural networkbasebeneficiarycognitive functiondeep learningdeep neural networkdesigndigitaldisabilityepidemiology studyexecutive functionhuman old age (65+)improvedlearning strategylongitudinal analysismachine learning methodmild cognitive impairmentperformance testsprogramspublic repositoryrepositoryscreeningsuccesstooltrend
项目摘要
Project Summary
Alzheimer's disease and related dementias (ADRD), a leading cause of disability among older adults, has
become a critical public health concern. The clock-drawing test (CDT), which measures multiple aspects of
cognitive function including comprehension, visual spatial abilities, executive function and memory, has been
widely used as a screening tool to detect dementia in clinical research, epidemiologic studies, and panel
surveys. The CDT asks subjects to draw a clock, typically with hands showing ten after 11, and then assigns
either a binary (e.g. normal vs. abnormal) or ordinal (e.g. 0 to 5) score. An important limitation in large-scale
studies is that the CDT requires manual coding, which could result in biases if coders interpret and implement
coding rules in different ways.
Several small-scale studies have explored the use of machine learning methods to automate CDT coding.
Such studies, which have had limited success with ordinal coding, have used methods that are not designed
specifically for complex image classification and are less effective than deep learning neural networks (DLNN),
a new and promising area of machine learning. More recently, machine learning methods have been applied to
digital CDT (dCDT), a form of CDT that uses a digital pen and tablet. Despite some promising results on small-
scale data, thus far dCDT studies have only attempted to code binary categories.
The proposed study will develop advanced DLNN models to create and evaluate an intelligent CDT Clock
Scoring system – CloSco – that will automatically code CDT images. We will use a large, publicly available
repository of CDT images from the 2011-2019 National Health and Aging Trends Study (NHATS), a panel
study of Medicare beneficiaries ages 65 and older funded by the National Institute on Aging. Specifically, we
will: 1) Develop an automated CDT-coding system for both ordinal and continuous scores; 2) Evaluate the
performance of the CloSco system and investigate the value of continuous CDT scoring for dementia
classification and longitudinal CDT models; and 3) Prepare and disseminate NHATS public-use files and
documentation with ordinal and continuous CDT codes assigned using CloSco along with the CloSco DLNN
program. If successful, the DLNN programs may offer a model for automating coding of other widely available
drawing tests used to evaluate a variety of cognitive functions.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mengyao Hu其他文献
Mengyao Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
- 批准号:
23K07844 - 财政年份:2023
- 资助金额:
$ 40.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Age-dependent Functional Changes in Skeletal Muscle CB1 Receptors by an in Vitro Model of Aging-related Muscle Atrophy
通过衰老相关性肌肉萎缩的体外模型分析骨骼肌 CB1 受体的年龄依赖性功能变化
- 批准号:
22KJ2960 - 财政年份:2023
- 资助金额:
$ 40.66万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Joint U.S.-Japan Measures for Aging and Dementia Derived from the Prevention of Age-Related and Noise-induced Hearing Loss
美日针对预防与年龄相关和噪声引起的听力损失而导致的老龄化和痴呆症联合措施
- 批准号:
23KK0156 - 财政年份:2023
- 资助金额:
$ 40.66万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
The Effects of Muscle Fatigability on Gait Instability in Aging and Age-Related Falls Risk
肌肉疲劳对衰老步态不稳定性和年龄相关跌倒风险的影响
- 批准号:
10677409 - 财政年份:2023
- 资助金额:
$ 40.66万 - 项目类别:
Characterizing gut physiology by age, frailty, and sex: assessing the role of the aging gut in "inflamm-aging"
按年龄、虚弱和性别表征肠道生理学特征:评估衰老肠道在“炎症衰老”中的作用
- 批准号:
497927 - 财政年份:2023
- 资助金额:
$ 40.66万 - 项目类别:
Role of AGE/RAGEsignaling as a driver of pathological aging in the brain
AGE/RAGE信号传导作为大脑病理性衰老驱动因素的作用
- 批准号:
10836835 - 财政年份:2023
- 资助金额:
$ 40.66万 - 项目类别:
Deciphering the role of osteopontin in the aging eye and age-related macular degeneration
破译骨桥蛋白在眼睛老化和年龄相关性黄斑变性中的作用
- 批准号:
10679287 - 财政年份:2023
- 资助金额:
$ 40.66万 - 项目类别:
Targeting Age-Activated Proinflammatory Chemokine Signaling by CCL2/11 to Enhance Skeletal Muscle Regeneration in Aging
通过 CCL2/11 靶向年龄激活的促炎趋化因子信号传导以增强衰老过程中的骨骼肌再生
- 批准号:
478877 - 财政年份:2023
- 资助金额:
$ 40.66万 - 项目类别:
Operating Grants
Elucidation of the protein kinase NLK-mediated aging mechanisms and treatment of age-related diseases
阐明蛋白激酶NLK介导的衰老机制及年龄相关疾病的治疗
- 批准号:
23K06378 - 财政年份:2023
- 资助金额:
$ 40.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Underlying mechanisms of age-related changes in ingestive behaviors: From the perspective of the aging brain and deterioration of the gustatory system.
与年龄相关的摄入行为变化的潜在机制:从大脑老化和味觉系统退化的角度来看。
- 批准号:
23K10845 - 财政年份:2023
- 资助金额:
$ 40.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




