Assessing Alzheimer disease risk and heterogeneity using multimodal machine learning approaches
使用多模式机器学习方法评估阿尔茨海默病风险和异质性
基本信息
- 批准号:10296695
- 负责人:
- 金额:$ 61.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlzheimer&aposs DiseaseAlzheimer&aposs disease riskAlzheimer’s disease biomarkerAutopsyBiological MarkersBloodBrainCerebrospinal FluidCharacteristicsClinicalCognitiveCollectionCommunitiesComplexDataData Storage and RetrievalDementiaDevelopmentDiagnosisDiseaseElderlyEthnic groupEuropeanFutureGene Expression RegulationGenesGeneticGenetic Predisposition to DiseaseHeterogeneityHumanImageImpaired cognitionIndividualInterventionMachine LearningMeasuresMedicineMethodsModalityModelingMolecularMultiomic DataNational Institute on AgingNatureNerve DegenerationNon-linear ModelsOntologyParticipantPathogenesisPatternPlasmaPopulation HeterogeneityPrevention strategyRegulator GenesResourcesSamplingStatistical ModelsSymptomsTherapeuticTherapeutic Clinical TrialTissuesWeightbaseclinical riskcognitive functioncombinatorialdeep learningdisease heterogeneitydisease phenotypedisorder subtypeeffective therapyendophenotypeethnic diversityfeature selectionfollow-upgene interactiongenetic risk factorhigh riskinnovationinsightlearning networkmachine learning algorithmmachine learning methodmultimodal datamultimodalityneuroimagingphenotypic datarisk stratificationsupervised learningtherapeutic targetunsupervised learning
项目摘要
PROJECT SUMMARY/ABSTRACT
Alzheimer's disease (AD) is the most common form of dementia characterized by progressive loss of cognitive
function. Unfortunately, currently there is no effective treatment for AD and clinical interventions of AD have
largely failed despite enormous efforts. For the current application, we seek to develop multimodal machine
learning models by leveraging the rich collection of AD-related omics data and phenotypical data recently
generated from large-scale collaborative projects such as Alzheimer Disease Neuroimaging Initiative (ADNI),
Accelerating Medicines Partnership-AD (AMP-AD) and the Alzheimer's Disease Sequencing Project (ADSP).
Three aims will be pursued in the current application. Aim 1. We will build an expandable multimodal
unsupervised machine learning framework to investigate AD heterogeneity. Given the multifactorial nature of
AD, we will perform AD subtyping by harnessing the rich information across multiple spectrum of data. Aim 2.
We will build an expandable multimodal supervised machine learning framework to quantify AD risk from
longitudinal follow up of cognitively normal elders. The models will be built from genetic susceptibility and gene
regulatory information as well as endophenotypes measured when participants were cognitive normal. Aim 3.
We will build AD-related gene interaction networks in post-mortem human brain samples. We will examine the
association of multiple omics data with AD in brain samples, and build tissue-specific interaction networks to
understand potential molecular mechanisms underlying AD pathogenesis. The present application represents
an innovative approach to identify individuals at high risk of AD from both clinical and genetic risk factors in
ethnically diverse populations. The outlined strategy will provide new insights into the risk stratification and
prevention strategies for AD. We also commit to share our methods through GitHub or CRAN for free access
across the scientific community.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANITA L DESTEFANO其他文献
ANITA L DESTEFANO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANITA L DESTEFANO', 18)}}的其他基金
Assessing Alzheimer disease risk and heterogeneity using multimodal machine learning approaches
使用多模式机器学习方法评估阿尔茨海默病风险和异质性
- 批准号:
10655876 - 财政年份:2021
- 资助金额:
$ 61.69万 - 项目类别:
Assessing Alzheimer disease risk and heterogeneity using multimodal machine learning approaches
使用多模式机器学习方法评估阿尔茨海默病风险和异质性
- 批准号:
10698063 - 财政年份:2021
- 资助金额:
$ 61.69万 - 项目类别:
Boston University Summer Institute for Research Education in Biostatistics
波士顿大学生物统计学研究教育夏季学院
- 批准号:
9888415 - 财政年份:2019
- 资助金额:
$ 61.69万 - 项目类别:
Boston University Summer Institute for Research Training in Biostatistics
波士顿大学生物统计学研究培训夏季学院
- 批准号:
9075607 - 财政年份:2016
- 资助金额:
$ 61.69万 - 项目类别:
Boston University Summer Institute in Biostastics
波士顿大学生物统计暑期学院
- 批准号:
7918058 - 财政年份:2009
- 资助金额:
$ 61.69万 - 项目类别:
Boston University Summer Institute in Biostatistics
波士顿大学生物统计学暑期学院
- 批准号:
8601199 - 财政年份:2009
- 资助金额:
$ 61.69万 - 项目类别:
Boston University Summer Institute in Biostastics
波士顿大学生物统计暑期学院
- 批准号:
7755239 - 财政年份:2009
- 资助金额:
$ 61.69万 - 项目类别:
Boston University Summer Institute in Biostatistics
波士顿大学生物统计学暑期学院
- 批准号:
8453910 - 财政年份:2009
- 资助金额:
$ 61.69万 - 项目类别:
Boston University Summer Institute in Biostastics
波士顿大学生物统计暑期学院
- 批准号:
8082707 - 财政年份:2009
- 资助金额:
$ 61.69万 - 项目类别:














{{item.name}}会员




