Assessing Alzheimer disease risk and heterogeneity using multimodal machine learning approaches
使用多模式机器学习方法评估阿尔茨海默病风险和异质性
基本信息
- 批准号:10698063
- 负责人:
- 金额:$ 63.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAccountingAlzheimer&aposs DiseaseAlzheimer&aposs disease riskAlzheimer’s disease biomarkerAutopsyBiological MarkersBloodBrainCerebrospinal FluidCharacteristicsClinicalCognitiveCollectionCommunitiesComplexDataData Storage and RetrievalDementiaDevelopmentDiagnosisDiseaseElderlyEthnic PopulationEuropean ancestryFutureGene Expression RegulationGenesGeneticGenetic Predisposition to DiseaseHeterogeneityHumanImageImpaired cognitionIndividualInterventionMachine LearningMeasuresMedicineMethodsModalityModelingMolecularMultiomic DataNational Institute on AgingNatureNerve DegenerationNon-linear ModelsOntologyParticipantPathogenesisPatternPersonsPlasmaPopulation HeterogeneityPrevention strategyRegulator GenesResourcesSamplingStatistical ModelsSymptomsTherapeuticTherapeutic Clinical TrialTissuesWeightclinical riskcognitive functioncombinatorialdeep learningdisease heterogeneitydisease phenotypedisorder subtypeeffective therapyendophenotypeethnic diversityfeature selectionfollow-upgene interactiongene regulatory networkgenetic risk factorhigh riskinnovationinsightlearning networkmachine learning algorithmmachine learning frameworkmachine learning methodmachine learning modelmodel buildingmultimodal datamultimodalityneuroimagingphenotypic datarisk stratificationsupervised learningtherapeutic targetunsupervised learning
项目摘要
PROJECT SUMMARY/ABSTRACT
Alzheimer's disease (AD) is the most common form of dementia characterized by progressive loss of cognitive
function. Unfortunately, currently there is no effective treatment for AD and clinical interventions of AD have
largely failed despite enormous efforts. For the current application, we seek to develop multimodal machine
learning models by leveraging the rich collection of AD-related omics data and phenotypical data recently
generated from large-scale collaborative projects such as Alzheimer Disease Neuroimaging Initiative (ADNI),
Accelerating Medicines Partnership-AD (AMP-AD) and the Alzheimer's Disease Sequencing Project (ADSP).
Three aims will be pursued in the current application. Aim 1. We will build an expandable multimodal
unsupervised machine learning framework to investigate AD heterogeneity. Given the multifactorial nature of
AD, we will perform AD subtyping by harnessing the rich information across multiple spectrum of data. Aim 2.
We will build an expandable multimodal supervised machine learning framework to quantify AD risk from
longitudinal follow up of cognitively normal elders. The models will be built from genetic susceptibility and gene
regulatory information as well as endophenotypes measured when participants were cognitive normal. Aim 3.
We will build AD-related gene interaction networks in post-mortem human brain samples. We will examine the
association of multiple omics data with AD in brain samples, and build tissue-specific interaction networks to
understand potential molecular mechanisms underlying AD pathogenesis. The present application represents
an innovative approach to identify individuals at high risk of AD from both clinical and genetic risk factors in
ethnically diverse populations. The outlined strategy will provide new insights into the risk stratification and
prevention strategies for AD. We also commit to share our methods through GitHub or CRAN for free access
across the scientific community.
项目总结/摘要
阿尔茨海默病(AD)是最常见的痴呆形式,其特征在于认知功能的进行性丧失,
功能不幸的是,目前还没有有效的治疗AD的方法,并且AD的临床干预措施还没有得到有效的治疗。
尽管付出了巨大的努力,但基本上还是失败了。对于当前的应用,我们寻求开发多模态机器
最近,通过利用丰富的AD相关组学数据和表型数据来学习模型,
从大规模的合作项目,如阿尔茨海默病神经成像倡议(ADNI),
加速药物伙伴关系-AD(AMP-AD)和阿尔茨海默病测序项目(ADSP)。
在本申请中将追求三个目标。目标1.我们将建立一个可扩展的多式联运
无监督机器学习框架来研究AD异质性。由于多因素的性质,
AD,我们将通过利用跨多个数据谱的丰富信息来执行AD子类型。目标2.
我们将建立一个可扩展的多模态监督机器学习框架,以量化AD风险,
对认知功能正常的老年人进行纵向随访。这些模型将从遗传易感性和基因
调节信息以及当参与者认知正常时测量的内表型。目标3.
我们将在死后人脑样本中构建AD相关基因相互作用网络。我们会研究
将多个组学数据与大脑样本中的AD相关联,并建立组织特异性相互作用网络,
了解AD发病机制的潜在分子机制。本申请代表
从临床和遗传风险因素中识别AD高风险个体的创新方法,
种族多样的人口。概述的策略将为风险分层提供新见解,
AD的预防策略。我们还承诺通过GitHub或CRAN分享我们的方法,以供免费访问
在科学界。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Association of lifestyle with deep learning predicted electrocardiographic age.
- DOI:10.3389/fcvm.2023.1160091
- 发表时间:2023
- 期刊:
- 影响因子:3.6
- 作者:Zhang, Cuili;Miao, Xiao;Wang, Biqi;Thomas, Robert J. J.;Ribeiro, Antonio H.;Brant, Luisa C. C.;Ribeiro, Antonio L. P.;Lin, Honghuang
- 通讯作者:Lin, Honghuang
Integrated omics analysis of coronary artery calcifications and myocardial infarction: the Framingham Heart Study.
- DOI:10.1038/s41598-023-48848-1
- 发表时间:2023-12-07
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
No evidence of association between habitual physical activity and ECG traits: Insights from the electronic Framingham Heart Study.
- DOI:10.1016/j.cvdhj.2021.11.004
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Kornej J;Murabito JM;Zhang Y;Liu C;Trinquart L;Sardana M;Manders ES;Hammond MM;Spartano NL;Pathiravasan CH;Wang X;Borrelli B;McManus DD;Benjamin EJ;Lin H
- 通讯作者:Lin H
Factors associated with long-term use of digital devices in the electronic Framingham Heart Study.
与长期使用数字设备在电子弗雷明汉心脏研究中的因素。
- DOI:10.1038/s41746-022-00735-1
- 发表时间:2022-12-27
- 期刊:
- 影响因子:15.2
- 作者:
- 通讯作者:
Association Between Acoustic Features and Neuropsychological Test Performance in the Framingham Heart Study: Observational Study.
- DOI:10.2196/42886
- 发表时间:2022-12-22
- 期刊:
- 影响因子:7.4
- 作者:Ding, Huitong;Mandapati, Amiya;Karjadi, Cody;Ang, Ting Fang Alvin;Lu, Sophia;Miao, Xiao;Glass, James;Au, Rhoda;Lin, Honghuang
- 通讯作者:Lin, Honghuang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANITA L DESTEFANO其他文献
ANITA L DESTEFANO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANITA L DESTEFANO', 18)}}的其他基金
Assessing Alzheimer disease risk and heterogeneity using multimodal machine learning approaches
使用多模式机器学习方法评估阿尔茨海默病风险和异质性
- 批准号:
10655876 - 财政年份:2021
- 资助金额:
$ 63.6万 - 项目类别:
Assessing Alzheimer disease risk and heterogeneity using multimodal machine learning approaches
使用多模式机器学习方法评估阿尔茨海默病风险和异质性
- 批准号:
10296695 - 财政年份:2021
- 资助金额:
$ 63.6万 - 项目类别:
Boston University Summer Institute for Research Education in Biostatistics
波士顿大学生物统计学研究教育夏季学院
- 批准号:
9888415 - 财政年份:2019
- 资助金额:
$ 63.6万 - 项目类别:
Boston University Summer Institute for Research Training in Biostatistics
波士顿大学生物统计学研究培训夏季学院
- 批准号:
9075607 - 财政年份:2016
- 资助金额:
$ 63.6万 - 项目类别:
Boston University Summer Institute in Biostastics
波士顿大学生物统计暑期学院
- 批准号:
7918058 - 财政年份:2009
- 资助金额:
$ 63.6万 - 项目类别:
Boston University Summer Institute in Biostatistics
波士顿大学生物统计学暑期学院
- 批准号:
8601199 - 财政年份:2009
- 资助金额:
$ 63.6万 - 项目类别:
Boston University Summer Institute in Biostatistics
波士顿大学生物统计学暑期学院
- 批准号:
8453910 - 财政年份:2009
- 资助金额:
$ 63.6万 - 项目类别:
Boston University Summer Institute in Biostastics
波士顿大学生物统计暑期学院
- 批准号:
7755239 - 财政年份:2009
- 资助金额:
$ 63.6万 - 项目类别:
Boston University Summer Institute in Biostastics
波士顿大学生物统计暑期学院
- 批准号:
8082707 - 财政年份:2009
- 资助金额:
$ 63.6万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 63.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 63.6万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 63.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Standard Grant
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:














{{item.name}}会员




