Assessing Alzheimer disease risk and heterogeneity using multimodal machine learning approaches
使用多模式机器学习方法评估阿尔茨海默病风险和异质性
基本信息
- 批准号:10655876
- 负责人:
- 金额:$ 64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAlzheimer&aposs DiseaseAlzheimer&aposs disease riskAlzheimer’s disease biomarkerAutopsyBiological MarkersBloodBrainCerebrospinal FluidCharacteristicsClinicalCognitiveCollectionCommunitiesComplexDataData Storage and RetrievalDementiaDevelopmentDiagnosisDiseaseElderlyEthnic groupEuropeanFutureGene Expression RegulationGenesGeneticGenetic Predisposition to DiseaseHeterogeneityHumanImageImpaired cognitionIndividualInterventionMachine LearningMeasuresMedicineMethodsModalityModelingMolecularMultiomic DataNational Institute on AgingNatureNerve DegenerationNon-linear ModelsOntologyParticipantPathogenesisPatternPersonsPlasmaPopulation HeterogeneityPrevention strategyRegulator GenesResourcesSamplingStatistical ModelsSymptomsTherapeuticTherapeutic Clinical TrialTissuesWeightbaseclinical riskcognitive functioncombinatorialdeep learningdisease heterogeneitydisease phenotypedisorder subtypeeffective therapyendophenotypeethnic diversityfeature selectionfollow-upgene interactiongene regulatory networkgenetic risk factorhigh riskinnovationinsightlearning networkmachine learning algorithmmachine learning frameworkmachine learning methodmachine learning modelmultimodal datamultimodalityneuroimagingphenotypic datarisk stratificationsupervised learningtherapeutic targetunsupervised learning
项目摘要
PROJECT SUMMARY/ABSTRACT
Alzheimer's disease (AD) is the most common form of dementia characterized by progressive loss of cognitive
function. Unfortunately, currently there is no effective treatment for AD and clinical interventions of AD have
largely failed despite enormous efforts. For the current application, we seek to develop multimodal machine
learning models by leveraging the rich collection of AD-related omics data and phenotypical data recently
generated from large-scale collaborative projects such as Alzheimer Disease Neuroimaging Initiative (ADNI),
Accelerating Medicines Partnership-AD (AMP-AD) and the Alzheimer's Disease Sequencing Project (ADSP).
Three aims will be pursued in the current application. Aim 1. We will build an expandable multimodal
unsupervised machine learning framework to investigate AD heterogeneity. Given the multifactorial nature of
AD, we will perform AD subtyping by harnessing the rich information across multiple spectrum of data. Aim 2.
We will build an expandable multimodal supervised machine learning framework to quantify AD risk from
longitudinal follow up of cognitively normal elders. The models will be built from genetic susceptibility and gene
regulatory information as well as endophenotypes measured when participants were cognitive normal. Aim 3.
We will build AD-related gene interaction networks in post-mortem human brain samples. We will examine the
association of multiple omics data with AD in brain samples, and build tissue-specific interaction networks to
understand potential molecular mechanisms underlying AD pathogenesis. The present application represents
an innovative approach to identify individuals at high risk of AD from both clinical and genetic risk factors in
ethnically diverse populations. The outlined strategy will provide new insights into the risk stratification and
prevention strategies for AD. We also commit to share our methods through GitHub or CRAN for free access
across the scientific community.
项目摘要/摘要
阿尔茨海默病(AD)是最常见的痴呆形式,其特征是进行性认知能力丧失
功能。不幸的是,目前尚无有效的治疗AD的方法,临床上对AD的干预措施
尽管付出了巨大的努力,但基本上还是失败了。针对目前的应用,我们寻求开发多模式机器
利用最近收集的丰富的AD相关组学数据和表型数据建立学习模型
由阿尔茨海默病神经成像倡议(ADNI)等大型合作项目产生,
加速药物伙伴关系-AD(AMP-AD)和阿尔茨海默病测序项目(ADSP)。
目前的申请将追求三个目标。目标1.我们将构建一个可扩展的多式联运
用于调查AD异质性的无监督机器学习框架。鉴于多因素的性质,
AD,我们将通过利用跨多个数据频谱的丰富信息来执行AD亚型。目标2.
我们将构建一个可扩展的多模式监督机器学习框架,以量化AD风险
认知正常老年人的纵向随访。这些模型将根据遗传易感性和基因
当参与者认知正常时,测量的监管信息以及内表型。目标3.
我们将在死后的人脑样本中建立AD相关基因相互作用网络。我们将研究
将多个组学数据与大脑样本中的AD联系起来,并建立组织特异性相互作用网络
了解AD发病的潜在分子机制。本申请代表
一种创新的方法,从临床和遗传风险因素中识别AD高危个体
不同种族的人口。概述的战略将提供对风险分层和
AD的预防策略。我们还承诺通过GitHub或CRAN共享我们的方法以供免费访问
整个科学界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANITA L DESTEFANO其他文献
ANITA L DESTEFANO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANITA L DESTEFANO', 18)}}的其他基金
Assessing Alzheimer disease risk and heterogeneity using multimodal machine learning approaches
使用多模式机器学习方法评估阿尔茨海默病风险和异质性
- 批准号:
10296695 - 财政年份:2021
- 资助金额:
$ 64万 - 项目类别:
Assessing Alzheimer disease risk and heterogeneity using multimodal machine learning approaches
使用多模式机器学习方法评估阿尔茨海默病风险和异质性
- 批准号:
10698063 - 财政年份:2021
- 资助金额:
$ 64万 - 项目类别:
Boston University Summer Institute for Research Education in Biostatistics
波士顿大学生物统计学研究教育夏季学院
- 批准号:
9888415 - 财政年份:2019
- 资助金额:
$ 64万 - 项目类别:
Boston University Summer Institute for Research Training in Biostatistics
波士顿大学生物统计学研究培训夏季学院
- 批准号:
9075607 - 财政年份:2016
- 资助金额:
$ 64万 - 项目类别:
Boston University Summer Institute in Biostatistics
波士顿大学生物统计学暑期学院
- 批准号:
8601199 - 财政年份:2009
- 资助金额:
$ 64万 - 项目类别:
Boston University Summer Institute in Biostatistics
波士顿大学生物统计学暑期学院
- 批准号:
8453910 - 财政年份:2009
- 资助金额:
$ 64万 - 项目类别:














{{item.name}}会员




