Assessing Alzheimer disease risk and heterogeneity using multimodal machine learning approaches
使用多模式机器学习方法评估阿尔茨海默病风险和异质性
基本信息
- 批准号:10655876
- 负责人:
- 金额:$ 64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAlzheimer&aposs DiseaseAlzheimer&aposs disease riskAlzheimer’s disease biomarkerAutopsyBiological MarkersBloodBrainCerebrospinal FluidCharacteristicsClinicalCognitiveCollectionCommunitiesComplexDataData Storage and RetrievalDementiaDevelopmentDiagnosisDiseaseElderlyEthnic groupEuropeanFutureGene Expression RegulationGenesGeneticGenetic Predisposition to DiseaseHeterogeneityHumanImageImpaired cognitionIndividualInterventionMachine LearningMeasuresMedicineMethodsModalityModelingMolecularMultiomic DataNational Institute on AgingNatureNerve DegenerationNon-linear ModelsOntologyParticipantPathogenesisPatternPersonsPlasmaPopulation HeterogeneityPrevention strategyRegulator GenesResourcesSamplingStatistical ModelsSymptomsTherapeuticTherapeutic Clinical TrialTissuesWeightbaseclinical riskcognitive functioncombinatorialdeep learningdisease heterogeneitydisease phenotypedisorder subtypeeffective therapyendophenotypeethnic diversityfeature selectionfollow-upgene interactiongene regulatory networkgenetic risk factorhigh riskinnovationinsightlearning networkmachine learning algorithmmachine learning frameworkmachine learning methodmachine learning modelmultimodal datamultimodalityneuroimagingphenotypic datarisk stratificationsupervised learningtherapeutic targetunsupervised learning
项目摘要
PROJECT SUMMARY/ABSTRACT
Alzheimer's disease (AD) is the most common form of dementia characterized by progressive loss of cognitive
function. Unfortunately, currently there is no effective treatment for AD and clinical interventions of AD have
largely failed despite enormous efforts. For the current application, we seek to develop multimodal machine
learning models by leveraging the rich collection of AD-related omics data and phenotypical data recently
generated from large-scale collaborative projects such as Alzheimer Disease Neuroimaging Initiative (ADNI),
Accelerating Medicines Partnership-AD (AMP-AD) and the Alzheimer's Disease Sequencing Project (ADSP).
Three aims will be pursued in the current application. Aim 1. We will build an expandable multimodal
unsupervised machine learning framework to investigate AD heterogeneity. Given the multifactorial nature of
AD, we will perform AD subtyping by harnessing the rich information across multiple spectrum of data. Aim 2.
We will build an expandable multimodal supervised machine learning framework to quantify AD risk from
longitudinal follow up of cognitively normal elders. The models will be built from genetic susceptibility and gene
regulatory information as well as endophenotypes measured when participants were cognitive normal. Aim 3.
We will build AD-related gene interaction networks in post-mortem human brain samples. We will examine the
association of multiple omics data with AD in brain samples, and build tissue-specific interaction networks to
understand potential molecular mechanisms underlying AD pathogenesis. The present application represents
an innovative approach to identify individuals at high risk of AD from both clinical and genetic risk factors in
ethnically diverse populations. The outlined strategy will provide new insights into the risk stratification and
prevention strategies for AD. We also commit to share our methods through GitHub or CRAN for free access
across the scientific community.
项目摘要/摘要
阿尔茨海默氏病(AD)是最常见的痴呆症形式,其特征是认知的逐渐丧失
功能。不幸的是,目前尚无有效的AD和AD临床干预措施
尽管付出了巨大的努力,但在很大程度上还是失败了。对于当前应用程序,我们寻求开发多模式机器
通过利用广告相关的OMIC数据和表型数据的丰富收集来学习模型
由大规模合作项目(例如阿尔茨海默氏病神经影像学计划(ADNI))产生的
加速药物合作伙伴关系(AMP-AD)和阿尔茨海默氏病测序项目(ADSP)。
当前申请将追求三个目标。目标1。我们将构建可扩展的多模式
无监督的机器学习框架,以调查AD异质性。鉴于多因素的性质
AD,我们将通过利用多种数据频谱来利用丰富的信息来执行AD子类型。目标2。
我们将构建一个可扩展的多模式监督机学习框架,以量化AD风险
认知正常长者的纵向随访。这些模型将由遗传敏感性和基因建立
当参与者是认知正常时,测量的调节信息以及内表型。目标3。
我们将在验尸后人脑样本中构建与广告相关的基因相互作用网络。我们将检查
多个OMIC数据与大脑样本中的AD的关联,并建立组织特异性的相互作用网络
了解AD发病机理的潜在分子机制。本申请代表
一种创新的方法,可以从临床和遗传危险因素中识别出AD高风险的个体
种族多样化的人群。概述的策略将为风险分层提供新的见解和
预防AD的策略。我们还致力于通过GitHub或Cran分享我们的方法以免费访问
在整个科学界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANITA L DESTEFANO其他文献
ANITA L DESTEFANO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANITA L DESTEFANO', 18)}}的其他基金
Assessing Alzheimer disease risk and heterogeneity using multimodal machine learning approaches
使用多模式机器学习方法评估阿尔茨海默病风险和异质性
- 批准号:
10296695 - 财政年份:2021
- 资助金额:
$ 64万 - 项目类别:
Assessing Alzheimer disease risk and heterogeneity using multimodal machine learning approaches
使用多模式机器学习方法评估阿尔茨海默病风险和异质性
- 批准号:
10698063 - 财政年份:2021
- 资助金额:
$ 64万 - 项目类别:
Boston University Summer Institute for Research Education in Biostatistics
波士顿大学生物统计学研究教育夏季学院
- 批准号:
9888415 - 财政年份:2019
- 资助金额:
$ 64万 - 项目类别:
Boston University Summer Institute for Research Training in Biostatistics
波士顿大学生物统计学研究培训夏季学院
- 批准号:
9075607 - 财政年份:2016
- 资助金额:
$ 64万 - 项目类别:
Boston University Summer Institute in Biostatistics
波士顿大学生物统计学暑期学院
- 批准号:
8601199 - 财政年份:2009
- 资助金额:
$ 64万 - 项目类别:
Boston University Summer Institute in Biostatistics
波士顿大学生物统计学暑期学院
- 批准号:
8453910 - 财政年份:2009
- 资助金额:
$ 64万 - 项目类别:
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 64万 - 项目类别:
The impact of bilingualism on cognitive reserve/resilience using socio-demographically and linguistically diverse populations
双语对社会人口和语言多样化人群的认知储备/弹性的影响
- 批准号:
10584245 - 财政年份:2023
- 资助金额:
$ 64万 - 项目类别:
Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
- 批准号:
10594266 - 财政年份:2023
- 资助金额:
$ 64万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 64万 - 项目类别:
Microbiome-gut-brain dysfunction in prodromal and symptomatic Lewy body diseases
前驱期和症状性路易体病中的微生物组-肠-脑功能障碍
- 批准号:
10720677 - 财政年份:2023
- 资助金额:
$ 64万 - 项目类别: