Therapeutic resistance and aggressive malignancy in glioblastomas: the contribution of GTP metabolism through regulation by IMPDH2
胶质母细胞瘤的治疗耐药性和侵袭性恶性肿瘤:IMPDH2 调节 GTP 代谢的贡献
基本信息
- 批准号:10296056
- 负责人:
- 金额:$ 41.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-07 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnabolismAnimalsAnti-Inflammatory AgentsAutomobile DrivingBiochemicalBiogenesisBiological ModelsBiologyBlood VesselsBrain NeoplasmsCell Culture TechniquesCell SurvivalCellsCellular biologyCerebral EdemaCollaborationsCoupledCryoelectron MicroscopyDNADNA RepairDNA Sequence AlterationDNA lesionDataDependenceEdemaEnergy MetabolismEnzymesFDA approvedFosteringFree RadicalsGenerationsGeneticGenetic TranscriptionGlioblastomaGliomaGoalsGrowthGuanosine TriphosphateHumanHypertrophyIMP DehydrogenaseIMPDH1 geneIMPDH2 geneImmunocompetentImmunosuppressionInosine MonophosphateIonizing radiationIsoenzymesJapanKnowledgeLaboratoriesLinkLipidsMalignant - descriptorMalignant NeoplasmsMediatingMetabolicMetabolismModelingMolecularMolecular AnalysisMorbidity - disease rateMusMycophenolic AcidNatureNucleotidesOxidoreductasePathogenesisPatient-Focused OutcomesPatientsPharmaceutical PreparationsPharmacologyPhosphotransferasesPrimary Brain NeoplasmsProdrugsPrognosisProliferatingPropertyProtein BiosynthesisPublishingRadiation OncologyRadiation therapyReactive Oxygen SpeciesRegulationResearchResistanceRibosomal RNARibosomesRoentgen RaysRoleSecondary toSignal TransductionStructureSystemTestingTherapeuticTherapeutic EffectTransfer RNAUp-RegulationWorkblood-brain barrier disruptioncancer cellcancer clinical trialcell killingclinically relevantdesignimprovedin vivoinhibitor/antagonistinsightmetabolomicsmutantmycophenolate mofetilnovelnovel therapeutic interventionnovel therapeuticsphosphatidylinositol 5-phosphatepre-clinicalpreclinical studypublic health relevanceradiation effectradiation resistancesensorstandard of carestem-like celltherapy resistanttranslation to humanstumortumor growthtumorigenesis
项目摘要
Summary
Glioblastoma multiforme (GBM) is the most aggressive and lethal of all brain tumors. Despite extensive efforts
to improve treatment, current GBM therapy only marginally prolongs median survival from about 12 months to
over 14 months. A variety of strategies have been attempted to improve treatment, but all have proven to be only
incrementally better than the current standard of care. Without the discovery of unique properties of gliomas that
could make them effective targets for treatment, GBM will continue to have an extremely poor prognosis. The
long-term goal of our laboratory is to understand the fundamental role of GTP metabolism in cancer growth using
GBM as a model system. To that end, we published in Molecular Cell (2016) the discovery of lipid kinase
PI5P4Kβ as an intracellular GTP sensor regulating the cells needs for GTP. In the course of investigating GTP
metabolism, we further published in Nature Cell Biology (2019) that increased GTP synthesis is directly linked
to the aggressive nature of GBM tumor proliferation. The GTP metabolic reprogramming is induced by
upregulation of inosine monophosphate dehydrogenase-2 (IMPDH2), activating de novo GTP biosynthesis for
the promotion of ribosomal biogenesis and protein synthesis. Importantly, a unique feature of treatment resistant
GBM stem-like cells (GSCs) is exclusive dependence on de novo GTP synthesis. In unpublished preliminary
studies, we have discovered that IMPDH2 is markedly resistant to the damaging effects of reactive oxygen
species (ROS). Importantly, ionizing radiation exerts its cell killing effect on tumor through DNA breaks directly
and secondary to the generation of ROS, which accounts for 60-70 % of DNA lesions. This high ROS
resistance appears to a critical and specific feature of IMPDH2. The central hypothesis guiding this proposal is
that IMPDH2 promotes GBM growth by i) being resistant to the damaging effect radiation induced ROS, ii)
inducing de novo GTP synthesis required for GSCs survival. We will test this by exploring the molecular
mechanisms of the ROS resistance using the structural and molecular analyses of IMPDH2 and its mutants.
(Aim 1) and GSC’s high dependence on de novo GTP biosynthesis (Aim 2). In Aim 3, we will use the IMPDH2
inhibitor, mycophenolic acid (MPA) and its prodrug, mycophenolate mofetil (MMF) on in vivo GBM models
tracking tumor growth and GBM microenvironments with a secondary objective to determine if these inhibitors,
by virtue of their anti-inflammatory and anti-angiogenic properties, reduce the cerebral edema commonly seen
in GBM (Aim 3). Completion of these aims will identify the mechanisms through which IMPDH2 regulates de
novo GTP synthesis thereby driving on GBM tumor growth. These insights, when combined preclinical data on
MMF, a drug already approved for its immunosuppressive effects, has the potential to result in rapid translation
to human GBM.
Project Description
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Atsuo Sasaki其他文献
Atsuo Sasaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Atsuo Sasaki', 18)}}的其他基金
Mechanistic role of phosphatidylinositol 5-phosphate 4-kinase beta in GTP-dependent lysosomal acidification for stress-resilient cell growth and metabolism
磷脂酰肌醇5-磷酸4-激酶β在GTP依赖性溶酶体酸化对应激恢复细胞生长和代谢中的机制作用
- 批准号:
10592707 - 财政年份:2022
- 资助金额:
$ 41.35万 - 项目类别:
Mechanistic role of phosphatidylinositol 5-phosphate 4-kinase beta in GTP-dependent lysosomal acidification for stress-resilient cell growth and metabolism
磷脂酰肌醇5-磷酸4-激酶β在GTP依赖性溶酶体酸化中对应激恢复细胞生长和代谢的机制作用
- 批准号:
10797540 - 财政年份:2022
- 资助金额:
$ 41.35万 - 项目类别:
Therapeutic resistance and aggressive malignancy in glioblastomas: the contribution of GTP metabolism through regulation by IMPDH2
胶质母细胞瘤的治疗耐药性和侵袭性恶性肿瘤:IMPDH2 调节 GTP 代谢的贡献
- 批准号:
10682618 - 财政年份:2021
- 资助金额:
$ 41.35万 - 项目类别:
Therapeutic resistance and aggressive malignancy in glioblastomas: the contribution of GTP metabolism through regulation by IMPDH2
胶质母细胞瘤的治疗耐药性和侵袭性恶性肿瘤:IMPDH2 调节 GTP 代谢的贡献
- 批准号:
10447195 - 财政年份:2021
- 资助金额:
$ 41.35万 - 项目类别:
Synthetic Lethal Combination of KRP203/Fingolimod with PI3K signaling for glioblastoma multiforme death by catastrophic vacuolization
KRP203/芬戈莫德与 PI3K 信号传导的合成致死组合可导致多形性胶质母细胞瘤灾难性空泡化死亡
- 批准号:
9335996 - 财政年份:2016
- 资助金额:
$ 41.35万 - 项目类别:
Synthetic Lethal Combination of KRP203/Fingolimod with PI3K signaling for glioblastoma multiforme death by catastrophic vacuolization
KRP203/芬戈莫德与 PI3K 信号传导的合成致死组合可导致多形性胶质母细胞瘤灾难性空泡化死亡
- 批准号:
9227435 - 财政年份:2016
- 资助金额:
$ 41.35万 - 项目类别:
Targeting the Novel PI5P4K Pathway to Induce Glioblastoma Senescence
靶向新的 PI5P4K 途径诱导胶质母细胞瘤衰老
- 批准号:
8935962 - 财政年份:2014
- 资助金额:
$ 41.35万 - 项目类别:
Targeting the Novel PI5P4K Pathway to Induce Glioblastoma Senescence
靶向新的 PI5P4K 途径诱导胶质母细胞瘤衰老
- 批准号:
8800075 - 财政年份:2014
- 资助金额:
$ 41.35万 - 项目类别:
Chemical probes that modulate a stress pathway phosphatidylinositol 5-phosphate 4
调节应激途径磷脂酰肌醇 5-磷酸 4 的化学探针
- 批准号:
8262562 - 财政年份:2012
- 资助金额:
$ 41.35万 - 项目类别:
Chemical Probes That Modulate Phosphatidylinositol-5-Phosphate 4-Kinase Activity
调节磷脂酰肌醇 5 磷酸 4 激酶活性的化学探针
- 批准号:
8403186 - 财政年份:2012
- 资助金额:
$ 41.35万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 41.35万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 41.35万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 41.35万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 41.35万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 41.35万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 41.35万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 41.35万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 41.35万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 41.35万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 41.35万 - 项目类别:
Discovery Early Career Researcher Award